Die lebewesen sind unveränderlich d.h. sie verändern sich über die jahrhunderte nicht

  • Abbot P et al (2011) Inclusive fitness theory and eusociality. Nature 471:E1–E4

    Google Scholar 

  • Aguilera P, Barry T, Tovar J (2008) Entamoeba histolytica mitosomes: Organelles in search of a function. Exp Parasitol 118:10–16

    CrossRef  CAS  PubMed  Google Scholar 

  • Alberts et al (1995) Molekularbiologie der Zelle. VCH, Weinheim

    Google Scholar 

  • Altman S (1989) Enzymatic cleavage of RNA by RNA. Noble Lecture

    Google Scholar 

  • Altner G (1984) Wer ist’s, der alles dies zusammenhält? In: Altner G (Hrsg) Die Welt als offenes System. Fischer Taschenbuch Verlag, Frankfurt a. M.

    Google Scholar 

  • Amann R (2012) Von der unermesslichen Vielfalt der Mikroorganismen und ihrer Erforschung mit genombasierten Methoden. Nova Acta Leopoldina NF 116(394):133–145

    CAS  Google Scholar 

  • Arrhenius S (1908) Worlds in the making. Harper, London

    Google Scholar 

  • Awramik SM et al (1992) In: Schidlowski (Hrsg) Early organic evolution: Implications of mineral and energy resources. Springer Verlag, Berlin

    Google Scholar 

  • Ax P (1984) Das Phylogenetische System. Systematisierung der lebenden Natur aufgrund ihrer Phylogenese. Gustav Fischer Verlag, Stuttgart, S 22–31

    Google Scholar 

  • Ax P (1988) Systematik in der Biologie. Darstellung der stammesgeschichtlichen Ordnung in der lebenden Natur. Gustav Fischer Verlag, Stuttgart, S 21–44

    Google Scholar 

  • Bada JL et al (2007) Debating evidence for the origin of life on earth. Science 315:937–938

    CrossRef  CAS  PubMed  Google Scholar 

  • Bapteste E, Brochier C (2004) On the conceptual difficulties in rooting the tree of life. Trends Microbiol 12:9–13

    CrossRef  CAS  PubMed  Google Scholar 

  • Basset Y et al (2012) Arthropod diversity in a tropical forest. Science 14:1481–1484

    CrossRef  CAS  Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of RNA world. Proc Nat Acad Sci USA 86:7054–7058

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Bessey CE (1908) The taxonomic aspect of the species. Amer 42:218–224

    Google Scholar 

  • Bishop JA, Cook LM (Hrsg) (1981) Genetic consequences of man-made change. Academic Press, London

    Google Scholar 

  • Blumenberg H (1981) Die Genesis der kopernikanischen Welt. Die Zweideutigkeit des Himmels – Eröffnung der Möglichkeit eines Kopernikus Bd. 1. Verlag Suhrkamp, Frankfurt a. M

    Google Scholar 

  • Bock W (2007) Explanation in evolutionary theory. J Zool Syst Evol Res 45:89–103

    CrossRef  Google Scholar 

  • Böhler C, Nielsen PE, Orgel LE (1995) Template switching between PNA and RNA oligonucleotides. Nature 376:578–581

    CrossRef  PubMed  Google Scholar 

  • Bokma F (2002) Detection of punctuated equilibrium from molecular phylogenies. J Evol Biol 15:1048–1055

    CrossRef  Google Scholar 

  • Brandon RN, Burian RM (Hrsg) (1984) Genes, organisms, populations. MIT Press, Cambridge, Mass

    Google Scholar 

  • Breuer R (1984) Das anthropische Prinzip. Der Mensch im Fadenkreuz der Naturgesetze. Ullstein Sachbuch, Frankfurt a. M., Berlin, Wien

    Google Scholar 

  • Cain AJ (1954) Animal species and their evolution. Hutchinson’s Univ. Library, London

    Google Scholar 

  • Cain AJ (1958) Logic and memory in Linnaeus’ system of taxonomy. Proc Linn Soc London 169:144–163

    CrossRef  Google Scholar 

  • Campbell DT (1960) Blind variation und selective retention in creative thought as in other Knowledge processes. Psychological Rev 67:380–400

    CrossRef  CAS  Google Scholar 

  • Carter B (1974) Large number coincidences and the Anthropic Principle in cosmology. In: Longair MS (Hrsg) Confrontation of cosmological theories with observational data. IAU-Symposium, S 291

    CrossRef  Google Scholar 

  • Cavalier-Smith T (1988) Origin of the cell nucleus. BioEssays 9:72–78

    CrossRef  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1989) Molecular phylogeny. Archaebacteria and Archaezoa. Nature 339:100–101

    CrossRef  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    CrossRef  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Bodmer WF (1971) The genetics of human populations. Freeman, San Francisco

    Google Scholar 

  • Cech TR (1986) The generality of self-splicing RNA: Relationships to nuclear mRNA slicing. Cell 44:618

    CrossRef  Google Scholar 

  • Crick F (1983) Das Leben selbst. Sein Ursprung, seine Natur. Piper & Co., München

    Google Scholar 

  • Crick F, Orgel L (1973) Directed panspermia. Icarus – Internat Journal of solar system studies 19:341 (Elsevier, San Diego)

    Google Scholar 

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity – a vast below. Science 309:1331–1333

    CrossRef  CAS  PubMed  Google Scholar 

  • Cziko GA (2001) Universal selection theory and the complementarity of different types of blind variation and selective retention. In: Heyes, Hull (Hrsg) „Selection theory and social construction.“. Suny Press, New York

    Google Scholar 

  • Danchin EGJ et al (2011) in. In: Pontarotti P (Hrsg) Evolutionary biology – concepts, biodiversity, macroevolution and genome evolution. Springer Verlag, Heidelberg New York, S 223–242

    CrossRef  Google Scholar 

  • Darwin C (1871) Brief an Hooker. In: Hartman G, Lawless JG, Morrison P (Hrsg) Search for the universal ancestors. NASA (S (SP-477))

    Google Scholar 

  • Darwin C (1980) Die Entstehung der Arten durch natürliche Zuchtwahl. Philipp Reclam jun, Leipzig

    Google Scholar 

  • Davies P (1998) Sind wir allein im Universum? Scherz Verlag, Berlin, München, Wien

    Google Scholar 

  • Dawkins R (1996) Das egoistische Gen. Rowohlt, Reinbek b. Hamburg. (engl. Ausgabe: The selfish gene. Oxford Univ. Press 1976)

    Google Scholar 

  • Dessauer F (1958) Naturwissenschaftliches Erkennen. Beiträge zur Naturphilosophie. Knecht Verlag, Frankfurt a M, S 325

    Google Scholar 

  • Dobzhansky T (1935) A critique of the species concept in biology. Philosophy of Science 2:344–355 (Die genetischen Grundlagen der Artbildung. Gustav Fischer, Jena 1939, Kap. VIII)

    CrossRef  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia Univ. Press, New York ((dt. Die genetischen Grundlagen der Artbildung, G Fischer, Jena 1939))

    Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. American biology teacher 35:125–129

    CrossRef  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    CrossRef  CAS  PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    CrossRef  CAS  PubMed  Google Scholar 

  • Edelman GM (1987) Neural darwinism. Basic Books, New York

    Google Scholar 

  • Egel R (2009) Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. BioEssays 31:1100–1109

    CrossRef  CAS  PubMed  Google Scholar 

  • Eigen M (1987) Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie. Piper Verlag, München

    Google Scholar 

  • Eigen M, Schuster P (1977, 1978) The hypercycle. A principle of natural self-organization. Naturwissenschaften 64:541–565; 65:7–41, 341–369

    Google Scholar 

  • Eldredge N (1985) Unfinished synthesis. Biological hierarchies and modern evolutionary thought. Oxford Univ. Press, Oxord

    Google Scholar 

  • Embley TMMW, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    CrossRef  CAS  PubMed  Google Scholar 

  • Erwin TL (1982) Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopterists Bull 36:74–75

    Google Scholar 

  • Erwin TL (1983) Beetles and other insects of tropical forest canopies at Manaus, Brazil, sampled by insecticidal fogging. In: Sutton, Whitemore, Chadwick (Hrsg) Tropical rain forest: Ecology and management. Blackwell, Edinburgh, S 59–75

    Google Scholar 

  • Erwin TL (1988) The tropical forest conapy. The heart of biotic diversity. In: Wilson EO (Hrsg) Biodiversity. National Academy Press, Washington, S 123–129

    Google Scholar 

  • Fani R, Gallo R, Liò P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11

    CAS  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clareton Press, Oxford. Dover, New York

    CrossRef  Google Scholar 

  • Flot JF et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457

    CrossRef  CAS  PubMed  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioassays 21:871–879

    CrossRef  CAS  Google Scholar 

  • Fox SW (1973) Origin of the cell: Experiments and premises. Die Naturwissenschaften 60:359–368

    CrossRef  CAS  PubMed  Google Scholar 

  • Frank JH, Curtis GA (1979) Trend lines and the number of species of Staphylinidae. Coleopterists Bull 33:133–149

    Google Scholar 

  • Freud S (1979) Vorlesungen zur Einführung in die Psychoanalyse. 18. Vorlesung. Fischer Taschenbuch, Verlag, Frankfurt a M

    Google Scholar 

  • Friday A, Ingram D (Hrsg) (1986) Cambridge. Enzyklopädie Biologie. VCH, Weinheim

    Google Scholar 

  • Futuyma DJ (1990) Evolutionsbiologie. Birkhäuser Verlag, Basel, S 170

    CrossRef  Google Scholar 

  • Futuyma DJ, Peterson SC (1985) Genetic variation in the use of resources by insects. Ann Rev Entomol 30:217–238

    CrossRef  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A non-hypothermophile common ancestor to extant life forms. Science 283:220–221

    CrossRef  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CrossRef  CAS  PubMed  Google Scholar 

  • Gesteland RF, Atkins JF (Hrsg) (1993) The RNA world. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Ghiselin MT (1987) Species concept, individuality, and objectivity. Biol a Phil 2:127–143

    CrossRef  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    CrossRef  Google Scholar 

  • Gogarten JP (1995) The early evolution of life. Trends Ecol Evol 10:147–151

    CrossRef  CAS  PubMed  Google Scholar 

  • Gogarten JP, Taiz L (1992) Evolution of proton-pumping ATP-ases: Rooting the tree of life. Photosynthesis Research 33:137–146

    CrossRef  CAS  PubMed  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    CrossRef  CAS  PubMed  Google Scholar 

  • Gould SJ (1982) The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. In: Milkman R (Hrsg) Perspectives in evolution. Sinauer, Sunderland, S 83–104

    Google Scholar 

  • Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227

    CrossRef  CAS  PubMed  Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    CrossRef  Google Scholar 

  • Haacke W (1893) Gestaltung und Vererbung. Weigel, Leipzig

    Google Scholar 

  • Hackstein JHP et al (2001) Hydrogenosomes: convergent adaptations of mitochondria to aerobis environments. Zoology 104:290–302

    CrossRef  CAS  PubMed  Google Scholar 

  • Hahn MW (2008) Toward a selection theory of molecular evolution. Evolution 62:255–265

    CrossRef  CAS  PubMed  Google Scholar 

  • Haldane JBS (1955) Population genetics. New Biology (Penguin Books) 18:34–51

    Google Scholar 

  • Halliday AN (2001) Earth science. In the beginning …. Nature 409:144–145

    CrossRef  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior I and II. J Theor Biol 7:1–52

    CrossRef  CAS  PubMed  Google Scholar 

  • Hardin JW (1975) Hybridisation and introgression in Quercus alba. Journal of the Arnold Arboretum, Harvard University 56:336–363

    Google Scholar 

  • Hayes JM (1996) The earliest memories of life on earth. Nature 384:21–22

    CrossRef  CAS  PubMed  Google Scholar 

  • Heisenberg W (1973) Naturwissenschaftliche und religiöse Wahrheit. In: Blum W, Dürr H-P, Rechenbach H (Hrsg) Werner Heisenberg – Gesammelte Werke, Bd. III. Piper Verlag, München, Zürich, S 422–439 (Abt. C)

    Google Scholar 

  • v Helmholtz H (1884) Über die Entstehung des Planetensystems Populärwissenschaftliche Vorträge. Vieweg, Braunschweig (Heft 3)

    Google Scholar 

  • Hölldobler B (2004) Ernst Mayr: the doyen of twentieth century evolutionary biology. Naturwissenschaften 91:249–254

    PubMed  Google Scholar 

  • Holman EW (1987) Recognizability of sexual and asexual species of rotifers. Systematic Zoology 36:381–386

    CrossRef  Google Scholar 

  • Honacki JH, Kinman KE, Koeppl JW (1982) Mammal species of the world. Allen Press, Lawrence, Kansas

    Google Scholar 

  • Horan BL (1994) The statistical character of evolutionary theory. Philos Science 61:76–95

    CrossRef  Google Scholar 

  • v Huene F (1940) Die stammesgeschichtliche Gestalt der Wirbeltiere. Paläontol Z 22:55–62

    CrossRef  Google Scholar 

  • Hull DL (1985) Darwinism as a historical entity: historiographic proposal. In: Kohn D (Hrsg) The Darwinian Heritage. Princeton Uni. Press, Princeton, S 773–812

    Google Scholar 

  • Hutchinson GE (1968) When are species necessary? In: Lewontin RC (Hrsg) Population biology and evolution. Syracuse Univ. Press, Syracuse/NY, S 177–186

    Google Scholar 

  • Huxley H (1942) Evolution. The modern synthesis. Allen, London

    Google Scholar 

  • Huxley J (1954) Entfaltung des Lebens. Fischer Bücherei, Frankfurt a M, S 121

    Google Scholar 

  • Huxley TH (1865) Über unsere Kenntnis von den Ursachen der Erscheinungen in der organischen Natur. Verlag Vieweg & Sohn, Braunschweig, S 136

    Google Scholar 

  • Huygens, Christiaan (1698) Cosmotheoros

    Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    CrossRef  CAS  PubMed  Google Scholar 

  • Jaspers K (1986) Einführung in die Philosophie. In „Was ist Philosophie? Ein Lesebuch“, 4. Aufl. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    CrossRef  CAS  PubMed  Google Scholar 

  • Johnston DE (1982) Acari. In: Parker SP (Hrsg) Synopsis and classification of living organisms. 2 McGraw-Hill, New York, S 111

    Google Scholar 

  • Jordan K (1905) Der Gegensatz zwischen geographischer und nichtgeographischer Variation. Z wiss Zool 83:151–210

    Google Scholar 

  • Joyce GF, Orgel LE (1993) Prospects for understanding the origin of the RNA world. In: Gesteland RF, Atkins JF (Hrsg) The RNA world. Cold Spring Harbor Laboratory Press, New York, S 1–25

    Google Scholar 

  • Kant I (1978) Kritik der praktischen Vernunft. Grundlagen der Metaphysik der Sitten. Verlag Philipp Reclam jun., Leipzig

    Google Scholar 

  • Kaplan RW (1972) Der Ursprung des Lebens. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    CrossRef  CAS  PubMed  Google Scholar 

  • Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early earth. Proc Trans R Soc B 361:1733–1742

    CrossRef  CAS  Google Scholar 

  • Kauffman S (1993) The origins of order: Self-organization and selection in the evolution. Oxford Univ. Press, New York

    Google Scholar 

  • Kauffman S (1996) Even peptides do it. Nature 382:496–497

    CrossRef  CAS  PubMed  Google Scholar 

  • Kerr RA (2000) Beating up on a young Earth, and possible life. Science 290:1677

    CrossRef  CAS  PubMed  Google Scholar 

  • Kimura M (1955) Solution of a process of random genetic drift with a continuous model. Proc Natl Acad Sci USA 41:144–150

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura M (1987) Die Neutralitätstheorie der molekularen Evolution. Parey Verlag, Berlin, Hamburg

    Google Scholar 

  • Kimura M, Ohta T (1971) Protein polymorphism as a phase of molecular evolution. Nature 229:467–469

    CrossRef  CAS  PubMed  Google Scholar 

  • Kinzelbach (1998) Biologen heute 6(98):3

    Google Scholar 

  • Kirschner M (1990) Evolution of cell. In: Grant PR, Horn S (Hrsg) Molds, molecules, and metazoa. Princeton Univ. Press, Princeton, S 99–126

    Google Scholar 

  • Kitcher P (1984) Species Phil Sci 51:308–333

    CrossRef  Google Scholar 

  • Klak C, Reeves G, Hedderson T (2004) Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65

    CrossRef  CAS  PubMed  Google Scholar 

  • Kuhn H, Waser J (1982) Selbstorganisation der Materie und Evolution früher Formen des Lebens. In: Hoppe W, Lohmann W, Markl H, Ziegler H (Hrsg) Biophysik, 2. Aufl. Springer Verlag, Berlin, S 860–905

    Google Scholar 

  • Küng H (2007) Der Anfang aller Dinge. Naturwissenschaft und Religion, 3. Aufl. Piper Verlag, München

    Google Scholar 

  • Kutschera U (2006) Constantin S. Merezhkowsky (1855–1921) und die Endosymbiontentheorie der Zellevolution. biologen heute 1:12–15

    Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory of Biosciences 124:1–24

    CrossRef  CAS  Google Scholar 

  • Laczano A (1993) In. In: Bengston S (Hrsg) Early life on earth. Nobel Symposium, 84. Columbio University Press, New York, S 59–80

    Google Scholar 

  • Lake JA, Rivera MC (1994) Was the nucleus the first endosymbiont? Proc Natl Acad Sci USA 91:2880–2881

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Lerner IM (1954) Genetic homeostasis. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Lewis RW (1980) Evolution: A system of theories. Perspectives in Biology and Medicine 23:551–572

    CrossRef  Google Scholar 

  • Lewontin RC (1970) The units of selection. Ann Rev Ecol Syst 1:1–18

    CrossRef  Google Scholar 

  • v Liebig J (1844) Chemische Briefe. Winter, Heidelberg

    Google Scholar 

  • Line MA (2002) The enigma of the origin of life and its timing. Microbiology 148:21–27

    CrossRef  CAS  PubMed  Google Scholar 

  • Locker A (Hrsg) (1983) Evolution – kritisch gesehen. Anton Pustet, Salzburg

    Google Scholar 

  • Lorenz K (1983) Das Wirkungsgefüge der Natur und das Schicksal des Menschen. In: Eibl-Eibesfeldt I (Hrsg) Gesammelte Arbeiten, 4. Aufl. Piper Verlag, München, S 27

    Google Scholar 

  • Luisi PL (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4:33–39

    CrossRef  CAS  Google Scholar 

  • Lumsden CJ, Wilson EO (1984) Das Feuer des Prometheus. Wie das menschliche Denken entstand. Piper Verlag, München

    Google Scholar 

  • Maddox J (1995) Polite row about models in biology. Nature 373:555

    CrossRef  CAS  PubMed  Google Scholar 

  • Maier UG, Hofmann CJB, Sitte P (1996) Die Evolution von Zellen. Naturwissenschaften 83:103–112

    CrossRef  CAS  PubMed  Google Scholar 

  • Margulis L (1996) Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin W (2007) Merežkovskij und der Ursprung des Zellkerns – zu viel einer guten Idee? In: Geus A, Höxtermann E (Hrsg) Evolution durch Kooperation und Integration. Basiliken Presse, Marburg, S 699–719

    Google Scholar 

  • Martin W (2009) Hydrothermalquellen und der Ursprung des Lebens. Biol Unserer Zeit 39:166–174

    CrossRef  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans R Soc Lond B Biol Sci 362:1887–1925

    CrossRef  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    CrossRef  CAS  PubMed  Google Scholar 

  • May RM (1992) Bottoms up for the oceans. Nature 357:278–279

    CrossRef  Google Scholar 

  • Maynard Smith J (1964) selection and kin selection Nature. Group 201:1145–1147

    Google Scholar 

  • Maynard Smith J (1986) Contemplating life without sex. Nature 324:300–301

    CrossRef  Google Scholar 

  • Maynard Smith J, Szathmáry E (1996) Evolution. Prozesse, Mechanismen, Modelle. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, S 169

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia Univ. Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard Univ. Press, Cambridge/Mass

    CrossRef  Google Scholar 

  • Mayr E (1984) Die Entwicklung der biologischen Gedankenwelt. Vielfalt, Evolution und Vererbung. Springer Verlag, Berlin, Heidelberg, S 202–238

    CrossRef  Google Scholar 

  • Mayr E (1991) Eine neue Philosophie der Biologie. Piper Verlag, München, Zürich, S 276

    Google Scholar 

  • Mayr E (1994) und Darwin hat doch recht. Charles Darwin, seine Lehre und die moderne Evolutionstheorie. Piper, München, S 142

    Google Scholar 

  • Mayr E, Ashlock PD (1991) Principles of systematic zoology, 2. Aufl. McGraw-Hill, New York

    Google Scholar 

  • Merežkovskij KS (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralblatt 30:278–288 (289–303, 321–347)

    Google Scholar 

  • Meselson M, Welch DM (2007) Stable heterozygosity? Science 318:202–203

    CrossRef  CAS  PubMed  Google Scholar 

  • Meyer A (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 8:279–284

    CrossRef  CAS  PubMed  Google Scholar 

  • Miller LA (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    CrossRef  CAS  PubMed  Google Scholar 

  • Mills SK, Beatty JH (1979) The propensity interpretation of fitness. Phil Sci 46:263–286

    CrossRef  Google Scholar 

  • Minelli A (1993) Biological Systematics. The state of the art. Chapman & Hall, London, S 62–86

    CrossRef  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygenisotopic evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181

    CrossRef  CAS  PubMed  Google Scholar 

  • Monod J (1975) Zufall und Notwendigkeit. Philosophische Fragen der modernen Biologie, 2. Aufl. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Muller CH (1951) The oaks of Texas. Contribution of the Texas Research Foundation 1:21–323

    Google Scholar 

  • Naegeli C (1865) Entstehung und Begriff der Naturhistorischen Art. K Bayer. Akademie, München

    Google Scholar 

  • v Naegeli C (1884) Mechanisch-physiologische Theorie der Abstammungslehre. Oldenbourg, München und Leipzig

    Google Scholar 

  • Neumann CW (1921) Vorwort zu Darwin: Die Abstammung des Menschen und die geschlechtliche Zuchtwahl. Reclam, Leipzig

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    CrossRef  CAS  PubMed  Google Scholar 

  • Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062

    Google Scholar 

  • Oparin AJ (1924) Die Entstehung des Lebens (russ). NAUK, Moskau ((Deutsche Übers. nach der zweiten vermehrten Ausgabe: (1947) Die Entstehung des Lebens auf der Erde. Volk und Wissen Verlag Berlin und Leipzig))

    Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    CrossRef  CAS  PubMed  Google Scholar 

  • Orgel L (1997) Polymerization on the rocks: theoretical introduction. Orig Life Evol Biosph 28:227–234

    CrossRef  Google Scholar 

  • Paley W (1802) Natural theology: Or, evidence of the existence and attributes of the deity, collected from the appearances of nature. R Fauldner, London

    CrossRef  Google Scholar 

  • Parker SA (Hrsg) (1982) Synopsis and classification of living organisms Bd. 2. McGraw Hill, New York

    Google Scholar 

  • Paterson HE (1985) The recognition concept of species. In: Vrba ES (Hrsg) Species and Speciation. Transvaal Museum Monograph, Bd. 4., S 21–29

    Google Scholar 

  • Peirce CS (1955) The architecture of theories. In: Buchler J (Hrsg) Philosophical writings of Peirce. Dover, New York (1891)

    Google Scholar 

  • Penzlin H (1998) Der Mensch – oder die Bürde der Freiheit Sitzungsberichte der Sächsischen Akademie der Wissenschaften. Mathem.-naturwiss. Klasse, Bd. 126. S. Hirzel, Stuttgart, Leipzig (Heft 5)

    Google Scholar 

  • Piccirilli JA (1995) RNA seeks its maker. Nature 376:548–549

    CrossRef  CAS  PubMed  Google Scholar 

  • Plate L (1913) Selektionsprinzip und Probleme der Artbildung, 4. Aufl. Engelmann, Leipzig, Berlin

    Google Scholar 

  • Plate L (1914) Prinzipien der Systematik mit besonderer Berücksichtigung des Systems der Tiere. Kultur der Gegenwart III(IV,4), S 92–164

    Google Scholar 

  • Poulton EB (1903) What is a species? Proc Entomol Soc London:LXXVI–CXVI

    Google Scholar 

  • Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean 1,84 billion years ago. Nature 431:173–177

    CrossRef  CAS  PubMed  Google Scholar 

  • Przybilski R, Bajaj P, Hammann C (2007) Katalytische RNA. Biol Unserer Zeit 37:356–364

    CrossRef  CAS  Google Scholar 

  • Raup DM, Sepkoski JJ (1982) Mass extinctions in the focil record. Science 215:1501–1503

    CrossRef  CAS  PubMed  Google Scholar 

  • Recker DA (1990) There’s more than one way to recognize a Darwinian: Lyell’s Darwinism. Phil Sci 37:459–478

    CrossRef  Google Scholar 

  • Rensch B (1929) Das Prinzip der geographischen Rassenkreise und das Problem der Artbildung. Borntraeger, Berlin

    Google Scholar 

  • Rensch B (1947) Neuere Probleme der Abstammungslehre. Ferdinand. Enke, Stuttgart, S 198

    Google Scholar 

  • Riedl R (1975) Die Ordnung des Lebendigen. Parey, Hamburg

    Google Scholar 

  • Rivera MV, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    CrossRef  CAS  PubMed  Google Scholar 

  • Rode BM, Fitz D, Jakschitz T (2007) The first steps of chemical evolution towards the origin of life. Chem Biodiv 4:2674–2702

    CrossRef  CAS  Google Scholar 

  • Roger AJ (1999) Reconstruction early events in eukaryotic evolution. Amer Nat 154:S146–S163

    CrossRef  Google Scholar 

  • Rolston H (1999) Genes, genesis, and God: Value and their origins in natural and human history. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Rosing MT (1999) 13 C-depleted carbon in >3700 Ma seafloor sedimentary rocks from West Greenland. Science 283:674–676

    CrossRef  CAS  PubMed  Google Scholar 

  • Rouch R (1986) Copepoda: Les Harpacticoides souterrains des eaux douce continentales. In: Botosaneanu L, Brill WJ (Hrsg) Stygofauna Mundi. Leiden, S 321–355

    Google Scholar 

  • Ruse M (1996) From monads to man. Harvard Univ. Press, Cambridge, Mass

    Google Scholar 

  • Russell MJ (2006) First life. Amer Sci 94:32–39

    CrossRef  Google Scholar 

  • Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371

    CrossRef  CAS  PubMed  Google Scholar 

  • Sars GO (1899) An account of the Crustacea of Norway Bd. II. Bergen Museum, Bergen

    Google Scholar 

  • Schaller F (1996) Evolution. Entgrenzung eines Begriffs. Naturwiss Rundsch 49:136–139

    Google Scholar 

  • Schurz G (2011) Evolution in Natur und Kultur. Spektrum Akademischer Verlag, Heidelberg

    CrossRef  Google Scholar 

  • Schwartz AW, Orgel LE (1985) Template directed synthesis of novel, nucleic acid-like structures. Science 228:585–587

    CrossRef  CAS  PubMed  Google Scholar 

  • Semon R (1912) Das Problem der Vererbung erworbener Eigenschaften. Engelmann, Leipzig

    Google Scholar 

  • Shapiro JA et al (2007) Adaptive genetic evolution in the Drosophila genomes. Proc Natl Acad Sci USA 104:2271–2276

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Shapiro R (1995) The prebiotic role of adenine: A critical analysis. Origin of life and the evolution of the biosphere 25:83–98

    CrossRef  CAS  Google Scholar 

  • Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024

    CrossRef  CAS  PubMed  Google Scholar 

  • Smolin L (1999) Warum gibt es die Welt? Die Evolution des Kosmos. Verlag C.H. Beck, München

    Google Scholar 

  • Sober E (1984) The nature of selection. MIT Press, Cambridge Mass

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Spank A et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Google Scholar 

  • Spencer H (1864) Principles of biology. William & Norgate, London

    Google Scholar 

  • Stanley SM (1979) Macroevolution: pattern and process. Freeman, San Francisco

    Google Scholar 

  • Stanley SM (1985) Rates of evolution. Paleobiology 11:13–26

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia Univ. Press, New York

    Google Scholar 

  • Stetter KO (1996) Evolution of hydrothermal ecosystems on earth (and mars?) Wiley. In: Boch GR, Goode JA (Hrsg) Ciba foundation symposium 202. Wiley, Chichester, S 1–18

    Google Scholar 

  • Stork NE (1988) Insect diversity: Facts, fiction and speculation. Biol J Linn Soc 35:321–337

    CrossRef  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    CrossRef  CAS  PubMed  Google Scholar 

  • Teilhard de Chardin P (1983) Der Mensch im Kosmos, 3. Aufl. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Teilhard de Chardin P (1984) Die Entstehung des Menschen, 2. Aufl. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Thomas CD (1990) Fewer species. Nature 347:237

    CrossRef  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen rich early earth atmosphere. Science 308:1014–1017

    CrossRef  CAS  PubMed  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiontic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Rev Genet 5:123–135

    CrossRef  CAS  PubMed  Google Scholar 

  • Tipler FJ (2004) Ein Designer-Universum. In: Wabbel TD (Hrsg) Im Anfang war (k)ein Gott. Naturwissenschaftliche und theologische Perspektiven. Patmos Verlag, Düsseldorf

    Google Scholar 

  • Tovar J et al (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    CrossRef  CAS  PubMed  Google Scholar 

  • Trucker BJ, Breaker RR (2005) Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15:342

    CrossRef  CAS  Google Scholar 

  • Tuomi J (1981) Structure and dynamics of Darwinian evolutionary theory. Syst Zool 30:22–31

    CrossRef  Google Scholar 

  • Tuomi J, Vuorisalo T, Laihonen P (1988) Components of selection: an expanded theory of natural selection. In: de Jong G (Hrsg) Population genetics and evolution. Springer, Heidelberg, S 109–118

    CrossRef  Google Scholar 

  • Vogel G, Angermann H (1990) Taschenatlas der Biologie Bd. 1. Georg Thieme, Stuttgart

    Google Scholar 

  • Wacey D et al (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience 4:698–702

    CrossRef  CAS  Google Scholar 

  • Wächtershäuser G (2000) Life as we don’t know it. Science 289:1307–1308

    CrossRef  PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of a chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans R Soc B 361:1787–1808

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Wallace AR (1889) Darwinism – an exposition of the theory of natural selection, with some of its applications. London, New York (dtsch. Braunschweig 1891)

    Google Scholar 

  • Walsh DA, Doolittle WF (2005) The real „domains“ of life. Curr Biol 15:R237–R240

    CrossRef  CAS  PubMed  Google Scholar 

  • Weinberg S (1980) Die ersten drei Minuten. Der Ursprung des Universums. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Wenzl A (1951) Drieschs Neuvitalismus und der philosophische Stand der Lebensprobleme heute. Reinhardt, München-Basel, S 151

    Google Scholar 

  • White MJD (1978) Modes of speciation. Freeman, San Francisco

    Google Scholar 

  • Whittmore AT, Schall BA (1991) Interspecific gene flow in sympathric oaks. Proceedings Nat Acad Sci 88:2540–2544

    CrossRef  Google Scholar 

  • Wieser W (1994b) Gentheorien und Systemtheorien: Wege und Wandlungen der Evolutionstheorie im 20. Jahrhundert. In: Wieser W (Hrsg) „Die Evolution der Evolutionstheorie. Von Darwin zur DNA“. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton Univ. Press, Princeton

    Google Scholar 

  • Williams MB (1973) The logical status and the theory of natural selection and other evolutionary controversies. In: Bunge M (Hrsg) The methodological unity of science. D. Reidel, Dordrecht

    Google Scholar 

  • Wilson EO (1975) Sociobiology – the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1978) On human nature. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (2000) Die Einheit des Wissens. Wolf Jobst Siedler Verlag, Berlin, S 169

    Google Scholar 

  • Wilson EO (2012) The social conquest of earth. Liveright Publ. Corp., New York, London

    Google Scholar 

  • Woese C (1967) The genetic code. Harper and Row, New York

    Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) The concept of cellular evolution. J Molec Evolution 10:1–6

    CrossRef  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: Proposal of the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Woltereck R (1940) Ontologie des Lebendigen. Enke, Stuttgart

    Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behavior. Oliver and Boyd, Edinburgh, London

    Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64

    CrossRef  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (Hrsg) Evolving genes and proteins. Academic Press, New York, S 97–166

    Google Scholar 

  • Was spricht für die Theorie von Carl von Linne?

    Die Hypothese von der Unveränderlichkeit der Arten (auch: Konstanz der Arten) geht von der Annahme aus, dass alle Arten in einem einmaligen Schöpfungsakt erschaffen wurden und dass es seitdem keine Veränderung der Arten – keine Evolution – gegeben hat.

    Was besagt die Abstammungstheorie?

    Die Abstammungstheorie, auch Deszendenztheorie genannt, ist die naturwissenschaftliche Theorie, die besagt, dass alle Arten der Lebewesen (d. h. der zellulär aufgebauten Organismen) auf eine oder wenige Urformen als gemeinsamen Vorgänger zurückgehen, mit dem jedes Lebewesen in gerader Abstammungslinie verbunden ist.

    Warum verändern sich Arten?

    Neue Arten entstehen gewissermaßen durch zufällige, genetische Veränderungen. Bringt sie im herrschenden Ökosystem Vorteile kann sie sich als erfolgreiche, neu erworbene Eigenschaft durchsetzen. Die Isolation vom Rest der Population sorgt schließlich dafür, dass sich eine ganz neue Art entwickelt.

    Wer vertrat die Katastrophentheorie?

    (Lamarckismus). Einen Gegenpol zur Lamarck'schen Abstammungstheorie bildete die Katastrophentheorie des Zoologen G. Baron de Cuvier. Er vertrat weiterhin die Konstanz der durch Schöpfung entstandenen Arten und hielt Fossilien für die Opfer von Katastrophen, die einige Tausend Jahre zurücklägen.