Which prokaryotic structure is used in the process of transferring DNA from one cell to another?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conjugation is the process by which one bacterium transfers genetic material to another through direct contact. During conjugation, one bacterium serves as the donor of the genetic material, and the other serves as the recipient. The donor bacterium carries a DNA sequence called the fertility factor, or F-factor. The F-factor allows the donor to produce a thin, tubelike structure called a pilus, which the donor uses to contact the recipient. The pilus then draws the two bacteria together, at which time the donor bacterium transfers genetic material to the recipient bacterium. Typically, the genetic material is in the form of a plasmid, or a small, circular piece of DNA. The genetic material transferred during conjugation often provides the recipient bacterium with some sort of genetic advantage. For instance, in many cases, conjugation serves to transfer plasmids that carry antibiotic resistance genes.

How do prokaryotic cells transfer DNA?

Prokaryotes, which include bacteria and single-celled microorganisms called Archaea, usually pass their chromosomal DNA on to their offspring asexually. In other words, a bacterial cell reproduces by simply replicating its chromosome and dividing into two daughter cells.

Which prokaryotic structure is used by the cell to move?

Flagella are long, hairlike organelles that extend from the cell, permitting it to move. In prokaryotic cells, such as bacteria, the flagella rotate like the propeller of a motorboat. In eukaryotic cells, such as certain protozoa and sperm cells, the flagella whip about and propel the cell.

What is one way that prokaryotes can move from one place to another?

Abstract. Prokaryotic cells move through liquids or over moist surfaces by swimming, swarming, gliding, twitching or floating. An impressive diversity of motility mechanisms has evolved in prokaryotes. Movement can involve surface appendages, such as flagella that spin, pili that pull and Mycoplasma 'legs' that walk.