Which of the following statements provides evidence to support the claim that no ATP will be synthesized in the absence?

  • Smedley, I. & Lubrzynska, E. The biochemical synthesis of the fatty acids. Biochem. J. 7, 364–374 (1913).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, H. T. M. et al. Serial plasma phospholipid fatty acids in the de novo lipogenesis pathway and total mortality, cause-specific mortality, and cardiovascular diseases in the cardiovascular health study. J. Am. Heart Assoc. 8, e012881 (2019). The first prospective study in adults to investigate the associations of DNL-related fatty acid biomarkers with mortality and incident CVD.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ference, B. A. et al. Mendelian randomization study of ACLY and cardiovascular disease. N. Engl. J. Med. 380, 1033–1042 (2019). Demonstrates that genetic variants that mimic ACLY inhibitors and statins lower plasma LDL in humans by the same mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  • Lawitz, E. J. et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1983–1991.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura, F. et al. Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. 17, e1003102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, J. et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J. Exp. Clin. Cancer Res. 38, 401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. et al. mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer. Oncotarget 7, 25224–25240 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Y. et al. mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1. Nat. Commun. 11, 2449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., Matteson, E. L., Goronzy, J. J. & Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 17, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo, Y. et al. Obesity drives Th27 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Gonzalez, S. et al. Human sebum requires de novo lipogenesis, which is increased in acne vulgaris and suppressed by acetyl-CoA carboxylase inhibition. Sci. Transl. Med. 11, eaau8465 (2019).

    Article  PubMed  Google Scholar 

  • Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Isaev, N. K., Stelmashook, E. V. & Genrikhs, E. E. Neurogenesis and brain aging. Rev. Neurosci. 30, 573–580 (2019).

    Article  PubMed  Google Scholar 

  • Markham, A. Bempedoic acid: first approval. Drugs 80, 747–753 (2020).

    Article  PubMed  Google Scholar 

  • Catlin, N. R. et al. Inhibition of ACC causes malformations in rats and rabbits: comparison of mammalian findings and alternative assays. Toxicol. Sci. 28, 183–194 (2020).

    Google Scholar 

  • Kelly, K. L. et al. De novo lipogenesis is essential for platelet production in humans. Nat. Metab. 2, 1163–1178 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Das, S. et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 21, 868–876 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016). First study to describe the generation of Acly-floxed mice and ACLY-null mouse embryonic fibroblasts. Using these models of ACLY deficiency, the authors show that this leads to upregulation of ACSS2 and scavenging of acetate to maintain acetyl-CoA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Z. et al. ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proc. Natl Acad. Sci. USA 115, E9499–E9506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502–513.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, L. et al. Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. Metab. Eng. 43, 198–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L. & Smith, J. W. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment. Cell Melanoma Res. 25, 375–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bideyan, L., Nagari, R. & Tontonoz, P. Hepatic transcriptional responses to fasting and feeding. Genes Dev. 35, 635–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Wewer Albrechtsen, N. J. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson, D. & Finck, B. N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17, 484–495 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Viscarra, J. & Sul, H. S. Epigenetic regulation of hepatic lipogenesis: role in hepatosteatosis and diabetes. Diabetes 69, 525–531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas, G., Borén, J. & Dulloo, A. G. De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol. Metab. 4, 367–377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, H., Shaw, J. L., Haigis, M. C. & Greka, A. Lipid metabolism in sickness and in health: emerging regulators of lipotoxicity. Mol. Cell 81, 3708–3730 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy, M. V. et al. Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J. Clin. Invest. 117, 2539–2552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, G. A. et al. Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats. PLoS ONE 8, e62669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfgang, M. J. & Lane, M. D. The role of hypothalamic malonyl-CoA in energy homeostasis. J. Biol. Chem. 281, 37265–37269 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Galic, S. et al. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. eLife 7, e32656 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Adlanmerini, M. et al. Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc. Natl Acad. Sci. USA 116, 18691–18699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondin, D. P. et al. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 25, 438–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gurmaches, J. et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195–209.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lodhi, I. J. et al. Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metab. 16, 189–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, F. et al. Activation of GCN2/ATF4 signals in amygdalar PKC-δ neurons promotes WAT browning under leucine deprivation. Nat. Commun. 11, 2847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tan, M. et al. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH. Cell Death Differ. 27, 2143–2157 (2020). First paper showing genetic inhibition of CIC (also known as SLC25A1) in the liver and that pharmacological inhibition of CIC using CTPI-2 reduces hepatic steatosis and glucose intolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q. et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 49, 1166–1175 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, J. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc. Natl Acad. Sci. USA 103, 8552–8557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage, D. B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817–824 (2006). First study showing that genetic inhibition of both ACC1 and ACC2 in the liver reduces hepatic steatosis and improves insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394–406 (2017). Demonstrates that ACC inhibitors reduce hepatic steatosis but also increase plasma triglycerides in humans. Subsequent studies in ACC hepatocyte-specific null mice show that this is an ‘on-target’ effect associated with activation of SREBP1c and increases in GPAT, which can be inhibited with fish oil.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013). Demonstrates additivity between ACC1 and ACC2 in the liver towards regulating liver DNL and fatty acid oxidation and that AMPK phosphorylation and inhibition of ACC1 and ACC2 reduces liver steatosis, fibrosis and insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow, J. D. et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy, M. V. et al. “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Roumans, K. H. M. et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat. Commun. 11, 1891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi, H. et al. ACC2 deletion enhances IMCL reduction along with acetyl-CoA metabolism and improves insulin sensitivity in male mice. Endocrinology 159, 3007–3019 (2018).

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, H. M. et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57, 1693–1702 (2014).

    Article  PubMed  Google Scholar 

  • Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milstein, S. W. & Hausberger, F. X. Lipogenesis and carbohydrate utilization; effects of glucose concentration and insulin in rat liver and adipose tissue. Diabetes 5, 89–92 (1956).

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D. K. & Czech, M. P. Primary role of decreased fatty acid synthesis in insulin resistance of large rat adipocytes. Am. J. Physiol. 234, E182–E189 (1978).

    CAS  PubMed  Google Scholar 

  • Roberts, R. et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52, 882–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Virtanen, K. A. et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J. Clin. Endocrinol. Metab. 87, 3902–3910 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Czech, M. P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab. 34, 27–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, S. et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 27, 2772–2784.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, J. et al. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proc. Natl Acad. Sci. USA 106, 17576–17581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brun, T. et al. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling. Diabetes 45, 190–198 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Cantley, J. et al. Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass. Diabetologia 62, 99–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Roduit, R. et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 53, 1007–1019 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kasper, P. et al. NAFLD and cardiovascular diseases: a clinical review. Clin. Res. Cardiol. 110, 921–937 (2021).

    Article  PubMed  Google Scholar 

  • Hannou, S. A., Haslam, D. E., McKeown, N. M. & Herman, M. A. Fructose metabolism and metabolic disease. J. Clin. Invest. 128, 545–555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. et al. Serial biomarkers of de novo lipogenesis fatty acids and incident heart failure in older adults: the cardiovascular health study. J. Am. Heart Assoc. 9, e014119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard-Mercier, A., Rudkowska, I., Lemieux, S., Couture, P. & Vohl, M. C. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation. J. Lipid Res. 54, 2866–2873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calle, R. A. et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-aclhoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trial. Nat. Med. 27, 1836–1848 (2021). First study in humans showing that ACC inhibition lowers HBA1c and that hypertriglyceridaemia can be avoided by co-administration with a DGAT2 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  • Morieri, M. L. PPARA polymorphism influences the cardiovascular benefit of fenofibrate in type 2 diabetes: findings from ACCORD-lipid. Diabetes 69, 771–783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baardman, J. et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat. Commun. 11, 6296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva, G. S. et al. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis 287, 38–45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, J. G. et al. Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis. J. Biol. Chem. 285, 23398–23409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabine, J. R., Abraham, S. & Chaikoff, I. L. Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control. Cancer Res. 27, 793–799 (1967).

    CAS  PubMed  Google Scholar 

  • Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G. & Swinnen, J. V. Role of the phosphatidylinositol 3’-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res. 62, 642–646 (2002).

    PubMed  Google Scholar 

  • Swinnen, J. V. et al. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 19, 5173–5181 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kumar-Sinha, C., Ignatoski, K. W., Lippman, M. E., Ethier, S. P. & Chinnaiyan, A. M. Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res. 63, 132–139 (2003).

    CAS  PubMed  Google Scholar 

  • Chang, Y., Wang, J., Lu, X., Thewke, D. P. & Mason, R. J. KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. J. Lipid Res. 46, 2624–2635 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. A., Han, W. F., Morin, P. J., Chrest, F. J. & Pizer, E. S. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp. Cell Res. 279, 80–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hawley, S. A. et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 459, 275–287 (1998).

    Article  Google Scholar 

  • Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005). First paper showing that genetic or pharmacological inhibition of ACLY with SB-204990 reduces cancer cell proliferation in vitro and in mouse xenografts.

    Article  CAS  PubMed  Google Scholar 

  • Gu, L. et al. The IKKβ-USP30-ACLY axis controls lipogenesis and tumorigenesis. Hepatology 73, 160–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M. & Joulin, V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66, 5287–5294 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Notarnicola, M. et al. Fatty acid synthase hyperactivation in human colorectal cancer: relationship with tumor side and sex. Oncology 71, 327–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  • De Piano, M. et al. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene 39, 3666–3679 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Icard, P. et al. ATP citrate lyase: a central metabolic enzyme in cancer. Cancer Lett. 471, 125–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Fhu, C. W. & Ali, A. Fatty acid synthase: an emerging target in cancer. Molecules 25, 3935 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  • Rae, C., Haberkorn, U., Babich, J. W. & Mairs, R. J. Inhibition of fatty acid synthase sensitizes prostate cancer cells to radiotherapy. Radiat. Res. 184, 482–493 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Shah, S. et al. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 7, 43713–43730 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y. et al. ATP citrate lyase inhibitor triggers endoplasmic reticulum stress to induce hepatocellular carcinoma cell apoptosis via p-eIF2α/ATF4/CHOP axis. J. Cell Mol. Med. 25, 1468–1479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, X., Hu, J., Zhao, J. & Chen, H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int. J. Clin. Exp. Med. 8, 7855–7860 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreño, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefere, S. & Tacke, F. Macrophages in obesity and non-alcoholic fatty liver disease: crosstalk with metabolism. JHEP Rep. 1, 30–43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997–1011.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias, A. J. et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 5, e11612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Osinalde, N. et al. Nuclear phosphoproteomic screen uncovers ACLY as mediator of IL-2-induced proliferation of CD4+T lymphocytes. Mol. Cell Proteom. 15, 2076–2092 (2016).

    Article  CAS  Google Scholar 

  • Mamareli, P. et al. Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection. Mucosal Immunol. 14, 164–176 (2020).

    Article  PubMed  Google Scholar 

  • Lee, J. et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192, 3190–3199 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S. et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat. Commun. 10, 120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  PubMed  Google Scholar 

  • Dimas, P. et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 8, e44702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi, D. et al. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl Acad. Sci. USA 115, E2634–E2643 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncal, J. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    Article  Google Scholar 

  • Najmabadi, H. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bowers, M. et al. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell 27, 98–109.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, A. B. et al. Cell-autonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Rep. 21, 3346–3353 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Montani, L. et al. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J. Cell Biol. 217, 1353–1368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingenberg, M. Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur. J. Biochem. 26, 587–594 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Halperin, M. L., Robinson, B. H. & Fritz, I. B. Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria. Proc. Natl Acad. Sci. USA 69, 1003–1007 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri, E. M. et al. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochim. Biophys. Acta 1847, 729–738 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ma, C. et al. Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein. J. Biol. Chem. 282, 17210–17220 (2007). Provides the first function-based identification of calcium binding sites within CIC that are crucial for the binding mechanism of CIC inhibitors.

    Article  CAS  PubMed  Google Scholar 

  • Aluvila, S. et al. The yeast mitochondrial citrate transport protein: molecular determinants of its substrate specificity. J. Biol. Chem. 285, 27314–27326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluvila, S., Sun, J., Harrison, D. H., Walters, D. E. & Kaplan, R. S. Inhibitors of the mitochondrial citrate transport protein: validation of the role of substrate binding residues and discovery of the first purely competitive inhibitor. Mol. Pharmacol. 77, 26–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, H. R. et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ. 25, 1239–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, X., Scultz, K., Bazilevsky, G. A., Vogt, A. & Marmorstein, R. Molecular basis for acetyl-CoA production by ATP-citrate lyase. Nat. Struct. Mol. Biol. 27, 33–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Martin, D. B. & Vagelos, P. R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J. Biol. Chem. 237, 1787–1792 (1962).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q. et al. Regulation on citrate influx and metabolism through inhibiting SLC13A5 and ACLY: a novel mechanism mediating the therapeutic effects of curcumin on NAFLD. J. Agric. Food Chem. 69, 8714–8725 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Joseph, J. W. et al. The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J. Biol. Chem. 281, 35624–35632 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Infantino, V., Iacobazzi, V., Menga, A., Avantaggiati, M. L. & Palmieri, F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim. Biophys. Acta 1839, 1217–1225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assmann, N. et al. SREBP-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18, 1197–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Mosaoa, R., Kasprzyk-Pawelec, A., Fernandez, H. R. & Avantaggiati, M. L. The mitochondrial citrate carrier SLC25A1/CIC and the fundamental role of citrate in cancer, inflammation and beyond. Biomolecules 11, 141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalina-Rodriguez, O. et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 3, 1220–1235 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Poolsri, W. A. et al. Combination of mitochondrial and plasma membrane citrate transporter inhibitors inhibits de novo lipogenesis pathway and triggers apoptosis in hepatocellular carcinoma cells. Biomed. Res. Int. 2018, 3683026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Potapova, I. A., El-Maghrabi, M. R., Doronin, S. V. & Benjamin, W. B. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry 39, 1169–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Alexander, M. C., Kowaloff, E. M., Witters, L. A., Dennihy, D. T. & Avruch, J. Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J. Biol. Chem. 254, 8052–8056 (1979). First identification that a peptide phosphorylated by insulin and glucagon in the liver is the citrate cleavage enzyme ACLY and is the same peptide also found in white adipocytes.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, M. W., Palmer, J. L., Keutmann, H. T. & Avruch, J. ATP-citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP-dependent protein kinase. J. Biol. Chem. 256, 8867–8870 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna, S., D’Angelo, G. & Benjamin, W. B. Sequence of sites on ATP-citrate lyase and phosphatase inhibitor 2 phosphorylated by multifunctional protein kinase (a glycogen synthase kinase 3 like kinase). Biochemistry 29, 7617–7624 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Pierce, M. W., Palmer, J. L., Keutmann, H. T., Hall, T. A. & Avruch, J. The insulin-directed phosphorylation site on ATP-citrate lyase is identical with the site phosphorylated by the cAMP-dependent protein kinase in vitro. J. Biol. Chem. 257, 10681–10686 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Berwick, D. C., Hers, I., Heesom, K. J., Moule, S. K. & Tavare, J. M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277, 33895–33900 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Martinez Calejman, C. et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 11, 575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, S. P., Sykes, B. D. & Bridger, W. A. Phosphorus-31 nuclear magnetic resonance study of the active site phosphohistidine and regulatory phosphoserine residues of rat liver ATP-citrate lyase. Biochemistry 24, 5527–5531 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Fan, F. et al. On the catalytic mechanism of human ATP citrate lyase. Biochemistry 51, 5198–5211 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kumari, R., Deshmukh, R. S. & Das, S. Caspase-10 inhibits ATP-citrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat. Commun. 10, 4255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Verschueren, K. H. G. et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568, 571–575 (2019). Reports high-resolution crystal structures of human ACLY and provides insight into the conformational plasticity of ACLY that is important for regulating catalytic activity.

    Article  CAS  PubMed  Google Scholar 

  • Fatland, B. L. et al. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 130, 740–756 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson, J. A., Fang, M. & Lowenstein, J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch. Biochem. Biophys. 35, 209–217 (1969).

    Article  Google Scholar 

  • Watson, J. A. & Lowenstein, J. M. Citrate and the conversion of carbohydrate into fat. J. Biol. Chem. 245, 5993–6002 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Triscari, J. & Sullivan, A. C. Comparative effects of (−)-hydroxycitrate and (+)-allo-hydroxycitrate on acetyl CoA carboxylase and fatty acid and cholesterol synthesis in vivo. Lipids 12, 357–363 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Dolle, R. E. et al. Synthesis of novel thiol-containing citric acid analogues. Kinetic evaluation of these and other potential active-site-directed and mechanism-based inhibitors of ATP citrate lyase. J. Med. Chem. 38, 537–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Chan, G. W. et al. Purpurone, an inhibitor of ATP-citrate lyase: a novel alkaloid from the marine sponge Iotrochota sp. J. Org. Chem. 58, 2544–2546 (1993).

    Article  CAS  Google Scholar 

  • Oleynek, J. J. et al. Anthrones, naturally occurring competitive inhibitors of adenosine-triphosphate-citrate lyase. Drug Dev. Res. 36, 35–42 (1995).

    Article  CAS  Google Scholar 

  • Ki, S. W. et al. Radicicol binds and inhibits mammalian ATP citrate lyase. J. Biol. Chem. 275, 39231–39236 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Islam, M. S., Tian, J., Lui, V. W. & Xiao, D. Inactivation of ATP citrate lyase by cucurbitacin B: a bioactive compound from cucumber inhibits prostate cancer growth. Cancer Lett. 349, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Koerner, S. K. Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase. Eur. J. Med. Chem. 126, 920–928 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. J., Lee, S. A., Myung, S. C., Kim, W. & Lee, C. S. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins. Mol. Cell Biochem. 359, 33–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Gribble, A. D. et al. ATP-citrate lyase as a target for hypolipidemic intervention. Design and synthesis of 2-substituted butanedioic acids as novel, potent inhibitors of the enzyme. J. Med. Chem. 39, 3569–3584 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Pearce, N. J. et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J. 334, 113–119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernigan, F. E., Hanai, J. I., Sukhatme, V. P. & Sun, L. Discovery of furan carboxylate derivatives as novel inhibitors of ATP-citrate lyase via virtual high-throughput screening. Bioorg. Med. Chem. Lett. 27, 929–935 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. J. et al. 2-Hydroxy-N-arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg. Med. Chem. Lett. 17, 3208–3211 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019). This study demonstrates that NDI-091143 binds next to the ACLY citrate binding site resulting in an extensive conformational change that prevents citrate binding and allosteric activation.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Tana, J., Rose-Kahn, G. & Srebnik, M. Inhibition of lipid synthesis by beta beta’-tetramethyl-substituted, C14-C22, alpha, omega-dicarboxylic acids in the rat in vivo. J. Biol. Chem. 260, 8404–8410 (1985). First study showing that the dicarboxylic acid MEDICA 16 inhibits both cholesterol and fatty acid synthesis.

    Article  CAS  PubMed  Google Scholar 

  • Rose-Kahn, G. & Bar-Tana, J. Inhibition of lipid synthesis by beta beta’-tetramethyl-substituted, C14-C22, alpha, omega-dicarboxylic acids in cultured rat hepatocytes. J. Biol. Chem. 260, 8411–8415 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, L. L., Kelly, S. E., Russell, J. C., Bar-Tana, J. & Lopaschuk, G. D. MEDICA 16 inhibits hepatic acetyl-CoA carboxylase and reduces plasma triacylglycerol levels in insulin-resistant JCR: LA-cp rats. Diabetes 51, 1548–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shurbaji, A. et al. Effect of 3-thiadicarboxylic acid on lipid metabolism in experimental nephrosis. Arterioscler. Thromb. 13, 1580–1586 (1993).

    Article  Google Scholar 

  • Cramer, C. T. et al. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. J. Lipid Res. 45, 1289–1301 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pinkosky, S. L. et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457 (2016). Demonstrates that conversion of bempedoic acid into bempedoyl-CoA by a long-chain acyl-CoA synthetase (ACSVL1) expressed in the liver is necessary for suppressing ACLY activity, LDL-cholesterol and atherosclerosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, C. & Triscari, J. Metabolic regulation as a control for lipid disorders. I. Influence of (−)-hydroxycitrate on experimentally induced obesity in the rodent. Am. J. Clin. Nutr. 30, 767–776 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Asghar, M. et al. Super CitriMax (HCA-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats. Mol. Cell Biochem. 304, 93–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Preuss, H. G. et al. Effects of a natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes. Metab. 6, 171–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Heymsfield, S. B. et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA 280, 1596–1600 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Pinkosky, S. L. et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res. 54, 134–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banach, M. et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 5, 1–12 (2020).

    Article  PubMed Central  Google Scholar 

  • Mayorek, N., Kalderon, B., Itach, E. & Bar-Tana, J. Sensitization to insulin induced by beta,beta′-methyl-substituted hexadecanedioic acid (MEDICA 16) in obese Zucker rats in vivo. Diabetes 46, 1958–1964 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. C. et al. Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16. Diabetes 47, 770–778 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Masson, W., Lobo, M., Lavalle-Cobo, A., Masson, G. & Molinero, G. Effect of bempedoic acid on new onset or worsening diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 168, 108369 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. C. et al. Hypolipidemic effect of beta, beta′-tetramethyl hexadecanedioic acid (MEDICA 16) in hyperlipidemic JCR:LA-corpulent rats. Arterioscler. Thromb. 11, 602–609 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. C. et al. Inhibition of atherosclerosis and myocardial lesions in the JCR:LA-cp rat by beta, beta′-tetramethylhexadecanedioic acid (MEDICA 16). Arterioscler. Thromb. Vasc. Biol. 15, 918–923 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Burke, A. C. et al. Bempedoic acid lowers low-density lipoprotein cholesterol and attenuates atherosclerosis in low-density lipoprotein receptor-deficient (LDLR+/− and LDLR−/−) Yucatan miniature pigs. Arterioscler. Thromb. Vasc. Biol. 38, 1178–1190 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Pinkosky, S. L., Groot, P. H. E., Lalwani, N. D. & Steinberg, G. R. Targeting ATP-citrate lyase in hyperlipidemia and metabolic disorders. Trends Mol. Med. 23, 1047–1063 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Laufs, U. et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J. Am. Heart Assoc. 8, e011662 (2019). Together with Ray et al. (2019), provides evidence that bempedoic acid safely lowers LDL-cholesterol in patients on maximally tolerated statin therapy or intolerant to statins.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abolhassani, M. et al. Screening of well-established drugs targeting cancer metabolism: reproducibility of the efficacy of a highly effective drug combination in mice. Invest. N. Drugs 30, 1331–1342 (2012).

    Article  CAS  Google Scholar 

  • Tong, L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol. Life Sci. 62, 1784–1803 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Halestrap, A. P. & Denton, R. M. Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-coenzyme A thioesters and citrate. Biochem. J. 142, 365–377 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson, C. A. & Kim, K. H. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378–380 (1973). First study demonstrating that phosphorylation of ACC inhibits enzyme activity and could override allosteric activation by citrate.

    Article  CAS  PubMed  Google Scholar 

  • Lent, B. A., Lee, K. H. & Kim, K. H. Regulation of rat liver acetyl-CoA carboxylase. Stimulation of phosphorylation and subsequent inactivation of liver acetyl-CoA carboxylase by cyclic 3′:5′-monophosphate and effect on the structure of the enzyme. J. Biol. Chem. 253, 8149–8156 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Munday, M. R., Campbell, D. G., Carling, D. & Hardie, D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331–338 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Lally, J. S. V. et al. Inhibition of acetyl-coa carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Pinkosky, S. L. et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat. Metab. 2, 873–881 (2020). Demonstrates that fatty acyl-CoAs allosterically activate AMPK and that subsequent phosphorylation of ACC is required to increase fatty acid oxidation in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, J. & Tong, L. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature 526, 723–727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Yang, Z., Shen, Y. & Tong, L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299, 2064–2067 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hunkele, M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470–474 (2018). Reports novel insights detailing dynamic interactions that occur in human ACC upon exposure to allosteric regulators such as citrate and palmityol-CoA.

    Article  Google Scholar 

  • Wei, J. et al. A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation. Cell Discov. 2, 16044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahlensieck, H. F., Pridzun, L., Reichenbach, H. & Hinnen, A. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25, 95–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y., Volrath, S. L., Weatherly, S. C., Elich, T. D. & Tong, L. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol. Cell 16, 881–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, A., Evans, J. L., Nordlund, A. C., Watts, T. D. & Witters, L. A. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content. J. Cell Biochem. 48, 86–97 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Harwood, H. J. Jr et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem. 278, 37099–37111 (2003). First study describing the discovery of a synthetic isozyme-nonselective ACC inhibitor, CP-610431, and its analogue CP-640186, by high-throughput inhibition screening and that this compound reduced fatty acid synthesis and increased fatty acid oxidation.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Tweel, B., Li, J. & Tong, L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186. Structure 12, 1683–1691 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chonan, T. et al. (4-Piperidinyl)-piperazine: a new platform for acetyl-CoA carboxylase inhibitors. Bioorg. Med. Chem. Lett. 19, 6645–6648 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, T. et al. Design, synthesis, and structure-activity relationships of spirolactones bearing 2-ureidobenzothiophene as acetyl-CoA carboxylases inhibitors. Bioorg. Med. Chem. Lett. 21, 6314–6318 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kamata, M. et al. Design, synthesis, and structure-activity relationships of novel spiro-piperidines as acetyl-CoA carboxylase inhibitors. Bioorg. Med. Chem. Lett. 22, 3643–3647 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kamata, M. et al. Symmetrical approach of spiro-pyrazolidinediones as acetyl-CoA carboxylase inhibitors. Bioorg. Med. Chem. Lett. 22, 4769–4772 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. S. et al. WZ66, a novel acetyl-CoA carboxylase inhibitor, alleviates nonalcoholic steatohepatitis (NASH) in mice. Acta Pharmacol. Sin. 41, 336–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Bergman, A. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of a liver-targeting acetyl-CoA carboxylase inhibitor (PF-05221304): a three-part randomized phase 1 study. Clin. Pharmacol. Drug Dev. 9, 514–526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harriman, G. et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl Acad. Sci. USA 113, E1796–E1805 (2016). Describes the development of a new ACC inhibitor (GS-0976 (Firsocostat)) that inhibits dimerization by binding to and mimicking the AMPK phosphorylation site. This compound inhibited DNL, increased fatty acid oxidation and improved insulin sensitivity in rodents. In subsequent studies, related molecules were shown to reduce non-small-cell lung cancer (Svensson et al. (2006)) and hepatocellular carcinoma (Lally et al. (2019)).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizojiri, R. et al. Discovery of novel selective acetyl-CoA carboxylase (ACC) 1 inhibitors. J. Med. Chem. 61, 1098–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mizojiri, R. et al. Design and synthesis of a novel 1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative as an orally available ACC1 inhibitor. Bioorg. Med. Chem. 27, 2521–2530 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gu, Y. G. et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. J. Med. Chem. 49, 3770–3773 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gu, Y. G. et al. N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as acetyl-coA carboxylase inhibitors–improvement of cardiovascular and neurological liabilities via structural modifications. J. Med. Chem. 50, 1078–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Glund, S. et al. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. Diabetologia 55, 2044–2053 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Nishiura, Y. et al. Discovery of a novel olefin derivative as a highly potent and selective acetyl-CoA carboxylase 2 inhibitor with in vivo efficacy. Bioorg. Med. Chem. Lett. 28, 2498–2503 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Schreurs, M. et al. Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Diabetes Obes. Metab. 11, 987–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ronnebaum, S. M. et al. Chronic suppression of acetyl-CoA carboxylase 1 in beta-cells impairs insulin secretion via inhibition of glucose rather than lipid metabolism. J. Biol. Chem. 283, 14248–14256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Gou, L., Yan, S. & Huang, T. Inhibition of acetyl-CoA carboxylase by PP-7a exerts beneficial effects on metabolic dysregulation in a mouse model of diet-induced obesity. Exp. Ther. Med. 20, 521–529 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith, D. A. et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J. Med. Chem. 57, 10512–10526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, T. T. et al. Acetyl-CoA carboxylase inhibition improves multiple dimensions of NASH pathogenesis in model systems. Cell Mol. Gastroenterol. Hepatol. 10, 829–851 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huard, K. et al. Optimizing the benefit/risk of acetyl-CoA carboxylase inhibitors through liver targeting. J. Med. Chem. 63, 10879–10896 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Molecular profiling reveals a common metabolic signature of tissue fibrosis. Cell Rep. Med. 1, 100056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M. et al. Acetyl-CoA carboxylase 1 and 2 inhibition ameliorates steatosis and hepatic fibrosis in a MC4R knockout murine model of nonalcoholic steatohepatitis. PLoS ONE 15, e0228212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, J. et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J. Hepatol. 73, 896–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Stiede, K. et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology 66, 324–334 (2017). First study in humans showing that ACC inhibition (with ND-630/GS-0976) reduces liver DNL.

    Article  CAS  PubMed  Google Scholar 

  • Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473.e6 (2018). First study in humans showing that ACC inhibition reduces liver fat and markers of fibrosis.

    Article  CAS  PubMed  Google Scholar 

  • Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73, 625–643 (2021). Phase II clinical trial demonstrating that a combination of ND-630 and a FXR agonist cilofexor reduces liver fibrosis in people with NASH.

    Article  CAS  PubMed  Google Scholar 

  • Waring, J. F. et al. Gene expression analysis in rats treated with experimental acetyl-coenzyme A carboxylase inhibitors suggests interactions with the peroxisome proliferator-activated receptor alpha pathway. J. Pharmacol. Exp. Ther. 324, 507–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Goedeke, L. et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology 68, 2197–2211 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Corominas-Faja, B. et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5, 8306–8316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo. Mol. Med. Rep. 8, 373–378 (2013).

    Article  PubMed  Google Scholar 

  • Hess, D., Chisholm, J. W. & Igal, R. A. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS ONE 5, e11394 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Montañés, F. et al. Phosphoproteomic analysis across the yeast life cycle reveals control of fatty acyl chain length by phosphorylation of the fatty acid synthase complex. Cell Rep. 32, 108024 (2020).

    Article  PubMed  Google Scholar 

  • Jin, Q. et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res. 12, R96 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, T., Liu, Z. & Yang, Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer 19, 146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, S., Witkowski, A. & Joshi, A. K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen, J. K. et al. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem. 284, 9011–9015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, S. W., Zheng, J., Zhang, Y. M. & Rock The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008). Report of the crystal structure of full mammalian FAS and molecular details of active sites.

    Article  CAS  PubMed  Google Scholar 

  • Omura, S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 40, 681–697 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhajda, F. P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA 97, 3450–3454 (2000). First paper describing the generation of the FAS inhibitor C75 and that inhibiting DNL in cancer cells using this compound reduces cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, F., Wang, Q., Chen, M., Quiocho, F. A. & Ma, J. Molecular docking study of the interactions between the thioesterase domain of human fatty acid synthase and its ligands. Proteins 70, 1228–1234 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kridel, S. J., Axelrod, F., Rozenkrantz, N. & Smith, J. W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64, 2070–2075 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hill, T. K. et al. Development of a self-assembled nanoparticle formulation of orlistat, Nano-ORL, with increased cytotoxicity against human tumor cell lines. Mol. Pharm. 13, 720–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava-Shah, A., Foygel, K., Devulapally, R. & Paulmurugan, R. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine 11, 235–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulmurugan, R. et al. Folate receptor-targeted polymeric micellar nanocarriers for delivery of orlistat as a repurposed drug against triple-negative breast cancer. Mol. Cancer Ther. 15, 221–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Alwarawrah, Y. et al. Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer. Cell Chem. Biol. 23, 678–688 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singha, P. K. et al. Evaluation of FASN inhibitors by a versatile toolkit reveals differences in pharmacology between human and rodent FASN preparations and in antiproliferative efficacy in vitro vs. in situ in human cancer cells. Eur. J. Pharm. Sci. 149, 105321 2020).

    Article  CAS  PubMed  Google Scholar 

  • Zadra, G. et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 116, 631–640 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hardwicke, M. A. et al. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat. Chem. Biol. 10, 774–779 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Kley, J. T., Mack, J., Hamilton, B., Scheuerer, S. & Redemann, N. Discovery of BI 99179, a potent and selective inhibitor of type I fatty acid synthase with central exposure. Bioorg. Med. Chem. Lett. 21, 5924–5927 (2011).

    CAS  PubMed  Google Scholar 

  • Ventura, R. et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2, 808–824 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Beysen, C. et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: results from two early-phase randomized trials. Diabetes Obes. Metab. 23, 700–710 (2021). First clinical findings that the FAS inhibitor FT-4101 reduces steatosis in people with NAFLD.

    Article  CAS  PubMed  Google Scholar 

  • Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000). First paper indicating that regulating malony-CoA in the hypothalamus is important for regulating energy intake.

    Article  CAS  PubMed  Google Scholar 

  • Makimura, H. et al. Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting. Diabetes 50, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gao, S. & Lane, M. D. Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc. Natl Acad. Sci. USA 100, 5628–5633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thupari, J. N., Landree, L. E., Ronnett, G. V. & Kuhajda, F. P. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc. Natl Acad. Sci. USA 99, 9498–9502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thupari, J. N., Kim, E. K., Moran, T. H., Ronnett, G. V. & Kuhajda, F. P. Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass. Am. J. Physiol. Endocrinol. Metab. 287, E97–E104 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa, T., Kumar, M. V. & Lane, M. D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl Acad. Sci. USA 99, 66–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Syed-Abdul, M. M. et al. Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology 72, 103–118 (2020). First clinical findings indicating that inhibiting FAS in individuals with obesity using TVB-2640 suppresses liver DNL with minimal adverse events.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, P. R., Liu, W., Xing, F., Fukuda, K. & Watabe, K. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat. Anticancer Drug Discov. 7, 185–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pizer, E. S. et al. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 56, 1189–1193 (1996).

    CAS  PubMed  Google Scholar 

  • Ho, T. S. et al. Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. Biomed. Pharmacother. 61, 578–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Elix, C. C. et al. Peroxisome proliferator-activated receptor gamma controls prostate cancer cell growth through AR-dependent and independent mechanisms. Prostate 80, 162–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchook, G. et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 34, 100797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Beigneux, A. P. et al. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 279, 9557–9564 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl Acad. Sci. USA 102, 12011–12016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirala, S. S. et al. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc. Natl Acad. Sci. USA 100, 6358–6363 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri, F., Scarcia, P. & Monné, M. Diseases caused by mutations in mitochondrial carrier genes SLC25: a review. Biomolecules 10, 655 (2020). Together with Beigneux et al. (2004), Abu-Elheiga et al. (2005) and Chirala et al. (2003), provides evidence demonstrating a crucial role for DNL in normal embryonic development.

    Article  CAS  PubMed Central  Google Scholar 

  • Esquejo, R. M. et al. Activation of Liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models. EBioMedicine 31, 122–132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluais-Dagorn, P. et al. Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis. Hepatol. Commun. 6, 101–119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruning, U. et al. Impairment of angiogenesis by fatty acid synthase Inhibition Involves mTOR malonylation. Cell Metab. 28, 866–880.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colak, G. et al. Proteomic and biochemical studies of lysine malonylation suggest its malonic aciduria-associated regulatory role in mitochondrial function and fatty acid oxidation. Mol. Cell Proteom. 14, 3056–3071 (2015).

    Article  CAS  Google Scholar 

  • Ishiguro, T. et al. Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins. Sci. Rep. 8, 7671 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Covarrubias, S. et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 10, 338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009). The first paper linking nutrient availability with histone acetylation through regulation of ACLY activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt, M. J. et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl Med. 11, eaau5758 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, N., Royaux, I., Swinnen, J. V. & Smans, K. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol. Cancer Ther. 11, 1925–1935 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Nazy, I., Arnold, D. M. & Steinberg, G. R. The mega-importance of de novo lipogenesis in platelet production. Nat. Metab. 2, 999–1000 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).

    Article  PubMed  Google Scholar 

  • Abdul-Wahed, A., Guilmeau, S. & Postic, C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 26, 324–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. & DeBose-Boyd, R. A. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb. Perspect. Biol. 3, a004754 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245–11250 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha, J. Y. & Repa, J. J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem. 282, 743–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Denechaud, P. D. et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118, 956–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsoudakis, G. et al. Soraphen A: a broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. J. Hepatol. 63, 813–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Fleta-Soriano, E. et al. The myxobacterial metabolite soraphen a inhibits HIV-1 by reducing virus production and altering virion composition. Antimicrob. Agents Chemother. 61, e00739-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Merino-Ramos, T. et al. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme a carboxylase impairs west nile virus replication. Antimicrob. Agents Chemother. 60, 307–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaunt, E. R., Cheung, W., Richards, J. E., Lever, A. & Desselberger, U. Inhibition of rotavirus replication by downregulation of fatty acid synthesis. J. Gen. Virol. 94, 1310–1317 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Webster-Cyriaque, J., Tomlinson, C. C., Yohe, M. & Kenney, S. Fatty acid synthase expression is induced by the Epstein–Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78, 4197–4206 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitakarun, A. et al. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, zika virus and chikungunya virus. Sci. Rep. 10, 1499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner, J. E. & Alfieri, C. The fatty acid lipid metabolism nexus in COVID-19. Viruses 13, 90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, J. et al. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat. Metab. 3, 1466–1475 (2021). Indicates that FAS inhibition may be beneficial against COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt, D. W. et al. Inhibition of sebum production with the acetyl coenzyme a carboxylase inhibitor olumacostat glasaretil. J. Invest. Dermatol. 137, 1415–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Raha, S. et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur. J. Immunol. 46, 2233–2238 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. et al. ACC1 (Acetyl Coenzyme A Carboxylase 1) is a potential immune modulatory target of cerebral ischemic. Stroke Stroke 50, 1869–1878 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gross, A. S. et al. Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK. J. Biol. Chem. 294, 12020–12039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatzel, D. K. et al. Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. J. Lipid Res. 59, 298–311 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ibitokou, S. A. et al. Early inhibition of fatty acid synthesis reduces generation of memory precursor effector T cells in chronic infection. J. Immunol. 200, 643–656 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Rymut, S. M. et al. Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L1081–L1093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Which of the following statements provides evidence to support the claim that no ATP will be?

    Which of the following statements provides evidence to support the claim that no ATP will be synthesized in the absence of a proton gradient across the thylakoid membrane? No ATP is synthesized when channel proteins that allow the free passage of protons are inserted into the thylakoid membrane.

    Which of the following best explains why triploid bananas do not produce seeds?

    Triploids seldom produce eggs or sperm that have a balanced set of chromosomes and so successful seed set is very rare. Bananas, too, are parthenocarpic and produce fruit in the absence of successful fertilization. These bananas are asexually propagated.

    Which of the following statements correctly explains the observed effect of the acetylcholine concentration on the rate of the enzyme catalyzed reaction?

    Which of the following statements correctly explains the observed effect of the acetylcholine concentration on the rate of the enzyme-catalyzed reaction? The active site of AChE is specific for acetylcholine, and only one substrate molecule can occupy the active site at a time.

    Which of the following most likely explains how the amino acid substitution has resulted in increased catalytic activity by the mutated enzyme?

    Which of the following most likely explains how the amino acid substitution has resulted in decreased catalytic activity by the mutated enzyme? The substitution decreased the mass of the enzyme so that the mutated enzyme binds more weakly to the substrate than the normal enzyme does.