Which of the following chest projections positions is recommended to detect calcifications or cavitation within the upper region near the clavicles?

References

  1. Pinsky PF, Gierada DS, Nath PH, Kazerooni E, Amorosa J. National lung screening trial: variability in nodule detection rates in chest CT studies. Radiology. 2013;268(3):865–73.

    CrossRef  Google Scholar 

  2. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology. 2004;233(3):793–8.

    CrossRef  Google Scholar 

  3. Shi CZ, Zhao Q, Luo LP, He JX. Size of solitary pulmonary nodule was the risk factor of malignancy. J Thorac Dis. 2014;6(6):668–76.

    Google Scholar 

  4. Snoeckx A, Reyntiens P, Desbuquoit D, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.

    CrossRef  Google Scholar 

  5. Chen L, Gao L, Wu WL. Correlation of spicule sign on computed tomography scans with peripheral lung cancers associated with interstitial lung disease and chronic obstructive pulmonary disease. Genet Mol Res. 2015;14(1):2234–40.

    CAS  CrossRef  Google Scholar 

  6. Yang XM, Huo MH, Xie YZ, Yan HZ, Lui HR, Weng DT. Vacuole sign and small node sign in early peripheral lung cancer. Pathologic basis and diagnostic value. Chin Med J (Engl). 1988;101(11):818–22.

    CAS  Google Scholar 

  7. Snoeckx A, Reyntiens P, Desbuquoit D, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.

    CrossRef  Google Scholar 

  8. Larici AR, Farchione A, Franchi P, et al. Lung nodules: size still matters. Eur Respir Rev. 2017;26(146):170025.

    CrossRef  Google Scholar 

  9. Wang JC, Sone S, Feng L, et al. Rapidly growing small peripheral lung cancers detected by screening CT: correlation between radiological appearance and pathological features. Br J Radiol. 2014;73(873):930–7.

    CrossRef  Google Scholar 

  10. Kundel HL. Visual search and lung nodule detection on CT scans. Radiology. 2015;274(1):14–6.

    CrossRef  Google Scholar 

  11. Seki N, Fujita Y, Shibakuki R, Seto T, Uematsu K, Eguchi K. Easier understanding of pleural indentation on computed tomography. Intern Med. 2007;46(24):2029–30.

    CrossRef  Google Scholar 

  12. Kim HJ, Cho JY, Lee YJ, et al. Clinical significance of pleural attachment and indentation of subsolid nodule lung cancer. Cancer Res Treat. 2019;51(4):1540–8.

    CrossRef  Google Scholar 

  13. Hsu JS, Han IT, Tsai TH, et al. Pleural tags on CT scans to predict visceral pleural invasion of non-small cell lung cancer that does not abut the pleura. Radiology. 2016;279(2):590–6.

    CrossRef  Google Scholar 

  14. Qi LP, Li XT, Yang Y, Chen JF, Wang J, Chen ML, Sun YS. Multivariate analysis of pleural invasion of peripheral non-small cell lung cancer-based computed tomography features. J Comput Assist Tomogr. 2016;40(5):757–62.

    CrossRef  Google Scholar 

  15. Ren H, Hruban RH, Kuhlman JE, et al. Computed tomography of inflation-fixed lungs: the beaded septum sign of pulmonary metastases. J Comput Assist Tomogr. 1989;13(3):411–6.

    Google Scholar 

  16. Murata K, Takahashi M, Mori M, et al. Pulmonary metastatic nodules: CT–pathologic correlation. Radiology. 1992;182(2):331–5.

    Google Scholar 

  17. Hirakata K, Nakata H, Haratake J. Appearance of pulmonary metastases on high-resolution CT scans: comparison with histopathologic findings from autopsy specimens. AJR Am J Roentgenol. 1993;161(1):37–43.

    CAS  CrossRef  Google Scholar 

  18. Lee KS, Kim Y, Han J, Ko EJ, Park CK, Primack SL. Bronchioloalveolar carcinoma: clinical, histopathologic, and radiologic findings. Radiographics. 1997;17(6):1345–57.

    Google Scholar 

  19. Patsios D, Roberts HC, Paul NS, et al. Pictorial review of the many faces of bronchioloalveolar cell carcinoma. Br J Radiol. 2007;80(960):1015–23.

    CAS  CrossRef  Google Scholar 

  20. Gardiner N, Jogai S, Wallis A. The revised lung adenocarcinoma classification-an imaging guide. J Thorac Dis. 2014;6(suppl 5):S537–46.

    Google Scholar 

  21. Kuriyama K, Tateishi R, Doi O, et al. Prevalence of air bronchograms in small peripheral carcinomas of the lung on thin-section CT: comparison with benign tumors. AJR Am J Roentgenol. 1991;156(5):921–4.

    CAS  CrossRef  Google Scholar 

  22. Ambrosini V, Nicolini S, Caroli P, et al. PET/CT imaging in different types of lung cancer: an overview. Eur J Radiol. 2012;81(5):988–1001.

    CrossRef  Google Scholar 

  23. Pilaniya V, Kunal S, Jain S, Shah A. Image diagnosis: bronchioloalveolar carcinoma presenting as unilateral “crazy-paving” pattern on high-resolution computed tomography. Perm J. 2016;20(2):e111–2.

    Google Scholar 

  24. Im JG, Han MC, Yu EJ, et al. Lobar bronchioloalveolar carcinoma: “angiogram sign” on CT scans. Radiology. 1990;176(3):749–53.

    CAS  CrossRef  Google Scholar 

  25. Maldonado RL. The CT angiogram sign. Radiology. 1999;210(2):323–4.

    Google Scholar 

  26. Algın O, Gökalp G, Topal U. Signs in chest imaging. Diagn Interv Radiol. 2011;17(1):18–29.

    Google Scholar 

  27. Seemann MD, Beinert T, Dienemann H, et al. Identification of characteristics for malignancy of solitary pulmonary nodules using high-resolution computed tomography. Eur J Med Res. 1996;1(8):371–6.

    CAS  Google Scholar 

  28. Yanagawa M, Kusumoto M, Johkoh T, et al. Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: a multicenter study. Clin Lung Cancer. 2018;19(3):e303–12.

    CrossRef  Google Scholar 

  29. Onoda H, Kimura T, Tao H, Okabe K, Matsumoto T, Ikeda E. Air bronchogram in pleomorphic carcinoma of the lung is associated with favorable prognosis. Thorac Cancer. 2018;9(6):718–25.

    CrossRef  Google Scholar 

  30. Dai J, Shi J, Soodeen-Lalloo AK, et al. Air bronchogram: a potential indicator of epidermal growth factor receptor mutation in pulmonary subsolid nodules. Lung Cancer. 2016;98:22–8.

    CrossRef  Google Scholar 

  31. Qu H, Zhang W, Yang J, Jia S, Wang G. The value of the air bronchogram sign on CT image in the identification of different solitary pulmonary consolidation lesions. Medicine (Baltim). 2018;97(35):e11985.

    CrossRef  Google Scholar 

  32. Choi JA, Kim JH, Hong KT, Kim HS, Oh YW, Kang EY. CT bronchus sign in malignant solitary pulmonary lesions: value in the prediction of cell type. Eur Radiol. 2000;10(8):1304–9.

    CAS  CrossRef  Google Scholar 

  33. Seijo LM, de Torres JP, Lozano MD, et al. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a bronchus sign on CT imaging: results from a prospective study. Chest. 2010;138(6):1316–21.

    Google Scholar 

  34. Woodring JH. The computed tomography mucous bronchogram sign. J Comput Tomogr. 1988;12(2):165–8.

    Google Scholar 

  35. Shroff GS, Marom EM, Godoy MCB, Truong MT, Chiles C. CT signs in the lungs. Semin Ultrasound CT MR. 2019;40(3):265–74.

    CrossRef  Google Scholar 

  36. Martinez S, Heyneman LE, McAdams HP, Rossi SE, Restrepo CS, Eraso A. Mucoid impactions: finger-in-glove sign and other CT and radiographic features. Radiographics. 2008;28(5):1369–82.

    CrossRef  Google Scholar 

  37. Walker CM, Abbott GF, Greene RE, Shepard JA, Vummidi D, Digumarthy SR. Imaging pulmonary infection: classic signs and patterns. AJR Am J Roentgenol. 2014;202(3):479–92.

    CrossRef  Google Scholar 

  38. Kwon WJ, Jeong YJ, Kim KI, Lee IS, Jeon UB, Lee SH, Kim YD. Computed tomographic features of pulmonary septic emboli: comparison of causative microorganisms. J Comput Assist Tomogr. 2007;31(3):390–4.

    CrossRef  Google Scholar 

  39. Dodd JD, Souza CA, Müller NL. High-resolution MDCT of pulmonary septic embolism: evaluation of the feeding vessel sign. AJR Am J Roentgenol. 2006;187(3):623–9.

    CrossRef  Google Scholar 

  40. Chou DW, Wu SL, Chung KM, Han SC, Cheung MH. Septic pulmonary embolism requiring critical care: clinicoradiological spectrum, causative pathogens and outcomes. Clinics (Sao Paulo). 2016;71(10):562–9.

    CrossRef  Google Scholar 

  41. Snoeckx A, Reyntiens P, Desbuquoit D, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.

    CrossRef  Google Scholar 

  42. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.

    CrossRef  Google Scholar 

  43. Longuet R, Phelan J, Tanous H, Bushong S. Criteria of the silhouette sign. Radiology. 1977;122(3):581–5.

    CAS  CrossRef  Google Scholar 

  44. Louw VJ, Schmidt A, Bolliger CT. The silhouette sign revisited. Respiration. 2000;67(1):89.

    CAS  CrossRef  Google Scholar 

  45. Hamiel U, Yeganeh S, Carrasso S, Soboh S. An alerting sign: enlarged cardiac silhouette. Cleve Clin J Med. 2015;82(12):801–3.

    CrossRef  Google Scholar 

  46. Blankenbaker DG. The luftsichel sign. Radiology. 1998;208(2):319–20.

    CAS  CrossRef  Google Scholar 

  47. Neelakantan S, Anandarajan R, Swamy AK, et al. Luftsichel sign. Case Rep. 2016;2016:bcr2016216551.

    Google Scholar 

  48. Day K, Oliva I. Signs in cardiopulmonary imaging: Luftsichel sign. J Thorac Imaging. 2015;30(3):W1.

    CrossRef  Google Scholar 

  49. Golden R. Effect of bronchostenosis upon the roentgen ray shadow in carcinoma of the bronchus. Am J Roentgenol. 1925;13:21–30.

    Google Scholar 

  50. Mullett R, Jain A, Kotugodella S, Curtis J. Lobar collapse demystified: the chest radiograph with CT correlation. Postgrad Med J. 2012;88(1040):335–47.

    CrossRef  Google Scholar 

  51. Gupta P. The Golden S sign. Radiology. 2004;233(3):790–1.

    CrossRef  Google Scholar 

  52. Potdar PV, Nayak MM. The Golden S sign. J Assoc Physicians India. 2015;63(8):68.

    Google Scholar 

  53. Moore AJE, Wachsmann J, Chamarthy MR, Panjikaran L, Tanabe Y, Rajiah P. Imaging of acute pulmonary embolism: an update. Cardiovasc Diagn Ther. 2018;8(3):225–43.

    CrossRef  Google Scholar 

  54. Hsu CW, Su HY. Palla’s sign and Hampton’s hump in pulmonary embolism. QJM. 2017;110(1):49–50.

    CrossRef  Google Scholar 

  55. Lee CH, Chan WP. Pulmonary embolism with Hampton’s hump. Acta Clin Belg. 2014;69(4):285–6.

    CAS  CrossRef  Google Scholar 

  56. Price J. Round pneumonia and focal organizing pneumonia are different entities. AJR Am J Roentgenol. 1999;172(2):549–50.

    CAS  CrossRef  Google Scholar 

  57. Katsumura Y, Shirakami K, Satoh S. Pneumococcal spherical pneumonia multiply distributed in one lung. Eur Respir J. 1997;10(10):2423–4.

    CAS  CrossRef  Google Scholar 

  58. Ufuk F, Herek D, Karabulut N. Inflammatory myofibroblastic tumor of the lung: unusual imaging findings of three cases. Pol J Radiol. 2015;80:479–82.

    CrossRef  Google Scholar 

  59. Surabhi VR, Chua S, Patel RP, Takahashi N, Lalwani N, Prasad SR. Inflammatory myofibroblastic tumors: current update. Radiol Clin N Am. 2016;54(3):553–63.

    CrossRef  Google Scholar 

  60. Partap VA. The comet tail sign. Radiology. 1999;213(2):553–4.

    CAS  CrossRef  Google Scholar 

  61. Riley JY, Naidoo P. Imaging assessment of rounded atelectasis: a pictorial essay. J Med Imaging Radiat Oncol. 2018;62(2):211–6.

    Google Scholar 

  62. Kakkar C, Koteshwara P, Kadavigere R. Round atelectasis. Lung India. 2015;32(6):646–7.

    Google Scholar 

  63. Thomas R, Madan R, Gooptu M, Hatabu H, Hammer MM. Significance of the reverse halo sign in immunocompromised patients. AJR Am J Roentgenol. 2019;213(3):549–54.

    CrossRef  Google Scholar 

  64. Marchiori E, Pereira ML, Zanetti G. The importance of the reversed halo sign in the diagnosis of pulmonary mucormycosis. AJR Am J Roentgenol. 2018;211(2):W137.

    Google Scholar 

  65. Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):200463.

    Google Scholar 

  66. Kuhlman JE, Fishman EK, Siegelman SS. Invasive pulmonary aspergillosis in acute leukemia: characteristic findings on CT, the CT halo sign, and the role of CT in early diagnosis. Radiology. 1985;157(3):611–4.

    CAS  CrossRef  Google Scholar 

  67. Zhang Y, Shen Y, Qiang JW, Ye JD, Zhang J, Zhao RY. HRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodules. Eur Radiol. 2016;26(9):2921–8.

    CrossRef  Google Scholar 

  68. Alves GR, Marchiori E, Irion K, et al. The halo sign: HRCT findings in 85 patients. J Bras Pneumol. 2016;42(6):435–9.

    CrossRef  Google Scholar 

  69. Abramson S. The air crescent sign. Radiology. 2001;218(1):230–2.

    CAS  CrossRef  Google Scholar 

  70. Tseng YY, Chen CH. Air crescent sign: not always due to fungal infection. QJM. 2015;108(3):255–6.

    CAS  CrossRef  Google Scholar 

  71. Sevilha JB, Rodrigues RS, Barreto MM, et al. Infectious and non-infectious diseases causing the air crescent sign: a state-of-the-art review. Lung. 2018;196(1):1–10.

    CrossRef  Google Scholar 

  72. Garg MK, Sharma M, Gulati A, et al. Imaging in pulmonary hydatid cysts. World J Radiol. 2016;8(6):581–7.

    CrossRef  Google Scholar 

  73. Argemi X, Santelmo N, Lefebvre N. Pulmonary cystic echinococcosis. Am J Trop Med Hyg. 2017;97(3):641–2.

    CrossRef  Google Scholar 

  74. Mehta P, Prakash M, Khandelwal N. Radiological manifestations of hydatid disease and its complications. Trop Parasitol. 2016;6(2):103–12.

    CrossRef  Google Scholar 

  75. Kligerman SJ, Henry T, Lin CT, Franks TJ, Galvin JR. Mosaic attenuation: etiology, methods of differentiation, and pitfalls. Radiographics. 2015;35(5):1360–80.

    CrossRef  Google Scholar 

  76. Ussavarungsi K, Lee AS, Burger CD. Mosaic pattern of lung attenuation on chest CT in patients with pulmonary hypertension. Diseases. 2015;3(3):205–12.

    CAS  CrossRef  Google Scholar 

  77. Stern EJ, Swensen SJ, Hartman TE, Frank MS. CT mosaic pattern of lung attenuation: distinguishing different causes. AJR Am J Roentgenol. 1995;165(4):813–6.

    CAS  CrossRef  Google Scholar 

  78. Gandara DR, Aberle D, Lau D, et al. Radiographic imaging of bronchioloalveolar carcinoma: screening, patterns of presentation and response assessment. J Thorac Oncol. 2006;1(9 suppl):S20–6.

    CrossRef  Google Scholar 

  79. Duann CW, Hung JJ, Hsu PK, et al. Surgical outcomes in lung cancer presenting as ground-glass opacities of 3 cm or less: a review of 5 years’ experience. J Chin Med Assoc. 2013;76(12):693–7.

    CrossRef  Google Scholar 

  80. Sawada S, Yamashita N, Sugimoto R, Ueno T, Yamashita M. Long-term outcomes of patients with ground-glass opacities detected using CT scanning. Chest. 2017;151(2):308–15.

    CrossRef  Google Scholar 

  81. Im JG, Itoh H, Shim YS, et al. Pulmonary tuberculosis: CT findings: early active disease and sequential change with antituberculous therapy. Radiology. 1993;186(3):653–60.

    CAS  CrossRef  Google Scholar 

  82. Minault Q, Karol A, Veillon F, Venkatasamy A. Tree-in-bud sign. Abdom Radiol (NY). 2018;43(11):3188–9.

    CrossRef  Google Scholar 

  83. Eisenhuber E. The tree-in-bud sign. Radiology. 2002;222(3):771–2.

    CrossRef  Google Scholar 

  84. Collins J, Blankenbaker D, Stern EJ. CT patterns of bronchiolar disease: what is “tree-in-bud”? AJR Am J Roentgenol. 1998;171(2):365–70.

    Google Scholar 

  85. Terhalle E, Günther G. ‘Tree-in-bud’: thinking beyond infectious causes. Respiration. 2015;89(2):162–5.

    Google Scholar 

  86. Davies P, Bradley C. Vanishing lung syndrome: giant bullous emphysema. Lancet. 2017;390(10112):2583.

    CrossRef  Google Scholar 

  87. Hadidi SA, Shastri R. Vanishing lung syndrome. J Am Osteopath Assoc. 2017;117(8):541.

    CrossRef  Google Scholar 

  88. Waitches GM, Stern EJ, Dubinsky TJ. Usefulness of the double-wall sign in detecting pneumothorax in patients with giant bullous emphysema. AJR Am J Roentgenol. 2000;174(6):1765–8.

    CAS  CrossRef  Google Scholar 

  89. Sharma N, Justaniah AM, Kanne JP, Gurney JW, Mohammed TL. Vanishing lung syndrome (giant bullous emphysema): CT findings in 7 patients and a literature review. J Thorac Imaging. 2009;24(3):227–30.

    CrossRef  Google Scholar 

  90. Baik JH, Ko JM, Park HJ. Pitfalls in radiographic interpretation of emphysema patients. Can Assoc Radiol J. 2016;67(3):277–83.

    CrossRef  Google Scholar 

  91. Murch C, Carr D. Computed tomography appearances of pulmonary alveolar proteinosis. Clin Radiol. 1989;40(3):240–3.

    CAS  CrossRef  Google Scholar 

  92. Matsuura H, Yamaji Y. Pulmonary alveolar proteinosis: crazing-paving appearance. Am J Med. 2018;131(4):e153–4.

    CrossRef  Google Scholar 

  93. Senturk A, Karalezli A, Soyturk AN, Hasanoglu HC. A rare cause of crazy-paving and mediastinal lymphadenopathy: congestive heart failure. J Clin Imaging Sci. 2013;3:30.

    CrossRef  Google Scholar 

  94. Felson B. The roentgen diagnosis of disseminated pulmonary alveolar diseases. Semin Roentgenol. 1967;2(1):3–21.

    CrossRef  Google Scholar 

  95. Tachibana T, Hagiwara K, Johkoh T. Pulmonary alveolar microlithiasis: review and management. Curr Opin Pulm Med. 2009;15(5):486–90.

    CrossRef  Google Scholar 

  96. Siddiqui NA, Fuhrman CR. Best cases from the AFIP: pulmonary alveolar microlithiasis. Radiographics. 2017;31(2):585–90.

    CrossRef  Google Scholar 

  97. Raju S, Ghosh S, Mehta AC. Chest CT signs in pulmonary disease: a pictorial review. Chest. 2017;151(6):1356–74.

    CrossRef  Google Scholar 

  98. Aikins A, Kanne JP, Chung JH. Galaxy sign. J Thorac Imaging. 2012;27(6):W164.

    CrossRef  Google Scholar 

  99. Halvorsen RA, Fedyshin PJ, Korobkin M, Foster WL, Thompson WM. Ascites or pleural effusion? CT differentiation: four useful criteria. Radiographics. 1986;6(1):135–49.

    Google Scholar 

  100. Yeh DW, Kim S, Lee NK, Lee JH, Lee TH, Lee SH, et al. The Perihepatic space: comprehensive anatomy and CT imaging of pathologic conditions. Radiographics. 2007;27(1):129–43.

    Google Scholar 

  101. Yigal A, Natalia S, Goldstein MS, Nurith H. Pleural effusion: characterization with CT attenuation values and CT appearance. AJR Am J Roentgenol. 2009;192(3):618–23.

    Google Scholar 

  102. Walker CM, Abbott GF, Greene RE, Shepard JA, Vummidi D, Digumarthy SR. Imaging pulmonary infection: classic signs and patterns. AJR Am J Roentgenol. 2014;202(3):479–92.

    Google Scholar 

  103. Kraus GJ. The split pleura sign. Radiology. 2007;243(1):297–8.

    CrossRef  Google Scholar 

  104. Heffner JE, Klein JS, Hampson C. Diagnostic utility and clinical application of imaging for pleural space infections. Chest. 2010;137(2):467–79.

    CrossRef  Google Scholar 

  105. Arai K, Takashima T, Matsui O, Kadoya M, Kamimura R. Transient subpleural curvilinear shadow caused by pulmonary congestion. J Comput Assist Tomogr. 1990;14(1):87–8.

    CAS  CrossRef  Google Scholar 

  106. Kagohashi K, Ohara G, Kurishima K, et al. Chronic eosinophilic pneumonia with subpleural curvilinear shadow. Acta Med (Hradec Kralove). 2011;54(1):45–8.

    CrossRef  Google Scholar 

  107. Ouellette H. The signet ring sign. Radiology. 1999;212(1):67–8.

    CAS  CrossRef  Google Scholar 

  108. Algin O, Gokalp G, Topal U. Signs in chest imaging. Diagnostic and interventional radiology (Ankara, Turkey) 2011;17(1):18–29.

    Google Scholar 

  109. Oh KS, Fleischner FG, Wyman SM. Characteristic pulmonary finding in traumatic complete transection of a main-stem bronchus. Radiology. 1969;92(2):371–372 passim.

    CAS  CrossRef  Google Scholar 

  110. Savaş R, Alper H. Fallen lung sign: radiographic findings. Diagn Interv Radiol. 2008;14(3):120–1.

    Google Scholar 

  111. Bagga B, Kumar A, Chahal A, Gamanagatti S, Kumar S. Traumatic airway injuries: role of imaging. Curr Probl Diagn Radiol. 2020;49(1):48–53.

    CrossRef  Google Scholar 

  112. Tack D, Defrance P, Delcour C, Gevenois PA. The CT fallen-lung sign. Eur Radiol. 2000;10(5):719–21.

    CAS  CrossRef  Google Scholar 

  113. Hammond DI. The “ring-around-the-artery” sign in pneumomediastinum. J Can Assoc Radiol. 1984;35(1):88–99.

    CAS  Google Scholar 

  114. Bejvan SM, Godwin JD. Pneumomediastinum: old signs and new signs. AJR Am J Roentgenol. 1996;166(5):1041–8.

    CAS  CrossRef  Google Scholar 

  115. Agarwal PP. The ring-around-the-artery sign. Radiology. 2006;241(3):943–4.

    CrossRef  Google Scholar 

  116. Kong A. The deep sulcus sign. Radiology. 2003;228(2):415–6.

    CrossRef  Google Scholar 

  117. Sabbar S, Nilles EJ. Images in clinical medicine. Deep sulcus sign. N Engl J Med. 2012;366(6):552.

    CrossRef  Google Scholar 

  118. Liu SY, Tsai IT, Yang PJ. Pneumothorax and deep sulcus sign. QJM. 2016;109(9):621–2.

    CrossRef  Google Scholar 

  119. Atik E, Arrieta R, Kalil FR. Case 2/2016 – scimitar sign with right pulmonary vein drainage into the right atrium. Arq Bras Cardiol. 2016;106(2):153–5.

    Google Scholar 

  120. Deniz A, Ozmen C, Aktas H, Balli T, Kanadasi M, Demir M, et al. Anomalous connection of the scimitar vein to the left atrium. Herz. 2013;38(8):928–30.

    CAS  CrossRef  Google Scholar 

  121. Nazarian J, Kanne JP, Rajiah P. Scimitar sign. J Thorac Imaging. 2013;28(4):W61.

    CrossRef  Google Scholar 

  122. Bhupali AN, Kumar J, Patil JK, Chitnis NS, Prasad S. Use of 64 slice CT in scimitar syndrome. J Assoc Physicians India. 2010;58:698–700.

    Google Scholar 

  123. Felson B, Rosenberg LS, Hamburger M. Roentgen findings in acute Friedländer’s pneumonia. Radiology. 1949;53(4):559–65.

    CAS  CrossRef  Google Scholar 

  124. Korvick JA, Hackett AK, Yu VL, Muder RR. Klebsiella pneumonia in the modern era: clinicoradiographic correlations. South Med J. 1991;84(2):200–4.

    CAS  CrossRef  Google Scholar 

  125. Rafat C, Fihman V, Ricard JD. A 51-year-old man presenting with shock and lower-lobe consolidation with interlobar bulging fissure. Chest. 2013;143(4):1167–9.

    CrossRef  Google Scholar 

  126. Hirshberg B, Sklair-Levi M, Nir-Paz R, Ben-Sira L, Krivoruk V, Kramer MR. Factors predicting mortality of patients with lung abscess. Chest. 1999;115(3):746–50.

    Google Scholar 

  127. Kuhlman JE, Singha NK. Complex disease of the pleural space: radiographic and CT evaluation. Radiographics. 1997;17(1):63–79.

    Google Scholar 

  128. Mendelson E. Abdominal wall masses: the usefulness of the incomplete border sign. Radiol Clin North Am. 1964;2:161–6.

    Google Scholar 

  129. Catalano O. The incomplete border sign. Radiology. 2002;225(1):129–30.

    CrossRef  Google Scholar 

  130. Hsu CC, Henry TS, Chung JH, Little BP. The incomplete border sign. J Thorac Imaging. 2014;29(4):W48.

    CrossRef  Google Scholar 

  131. Huang KY, Shen TC, Tu CY. Incomplete border sign. QJM. 2013;106(9):871–2.

    Google Scholar 

  132. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4):420–2.

    Google Scholar 

  133. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.

    Google Scholar 

  134. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

    CAS  CrossRef  Google Scholar 

  135. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, Ling Y, Jiang Y, Shi Y. Emerging Coronavirus 2019-nCoV Pneumonia. Radiology. 2020;295(1):210–7.

    Google Scholar 

  136. Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH. Radiographic and CT features of viral pneumonia. Radiographics. 2018;38(3):719–39.

    Google Scholar 

  137. Sakamoto T, Tei C, Murayama M, et al. Giant T wave inversion as a manifestation of asymmetrical apical hypertrophy (AAH) of the left ventricle: echocardiographic and ultrasonocardiotomographic study. Jpn Heart J. 1976;17(5):611–29.

    Google Scholar 

  138. Yamaguchi H, Ishimura T, Nishiyama S, et al. Hypertrophic nonobstructive cardiomyopathy with giant negative T waves (apical hypertrophy): ventriculographic and echocardiographic features in 30 patients. Am J Cardiol. 1979;44(3):401–12.

    Google Scholar 

  139. Ho HH, Lee KL, Lau CP, Tse HF. Clinical characteristics of and long-term outcome in Chinese patients with hypertrophic cardiomyopathy. Am J Cardiol. 2004;116(1):19–23.

    Google Scholar 

  140. Kitaoka H, Doi Y, Casey SA, Hitomi N, Furuno T, Maron BJ. Comparison of prevalence of apical hypertrophic cardiomyopathy in Japan and the United States. Am J Cardiol. 2003;92(10):1183–6.

    Google Scholar 

  141. Chikamori T, Doi YL, Akizawa M, et al. Comparison of clinical, morphological and prognostic features in hypertrophic cardiomyopathy between Japanese and western patients. Clin Cardiol. 1992;15:833–7.

    Google Scholar 

  142. Maron MS, Finley JJ, Bos JM, Hauser TH, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118(15):1541–9.

    Google Scholar 

  143. Eriksson MJ, Sonnenberg B, Woo A, et al. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39:638–45.

    CrossRef  Google Scholar 

  144. Leaphart D, Waring A, Suranyi P, Fernandes V. Call a spade a spade: missed diagnosis of apical hypertrophic cardiomyopathy. Am J Med Sci. 2019;358(4):299–303.

    CrossRef  Google Scholar 

  145. Yamada M, Teraoka K, Kawade M, et al. Frequency and distribution of late gadolinium enhancement in magnetic resonance imaging of patients with apical hypertrophic cardiomyopathy and patients with asymmetrical hypertrophic cardiomyopathy: a comparative study. Int J Cardiovasc Imaging. 2009;25(suppl 1):131–8.

    CrossRef  Google Scholar 

  146. Camelia CD, Nicoleta D, Ana GF, Smarandita L, Daniela B. Apical hypertrophic cardiomyopathy: the ace-of-spades as the disease card. Acta Cardiol Sin. 2015;31:83–6.

    Google Scholar 

  147. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389(10075):1253–67.

    Google Scholar 

  148. Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy: clinical spectrum and treatment. Circulation. 1995;92(7):1680–92.

    Google Scholar 

  149. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):2761–96.

    Google Scholar 

  150. Nistri S, Olivotto I, Betocchi S, Losi MA, et al. Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol. 2006;98(7):960–5.

    Google Scholar 

  151. Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology. 2014;273(2):329–48.

    Google Scholar 

  152. Maron MS, Maron BJ. Clinical impact of contemporary cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Circulation. 2015;132(4):292–8.

    Google Scholar 

  153. Hindieh W, Weissler Snir-A, Hammer H, Adler A, Rakowski H, Chan RH. Discrepant measurement of maximal left ventricular wall thickness between cardiac magnetic resonance imaging and echocardiography in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10(8):e006309.

    Google Scholar 

  154. Sherrid MV, Balaram S, Kim B, Axel L, Swistel DG. The mitral valve in obstructive hypertrophic cardiomyopathy: a test in context. J Am Coll Cardiol. 2016;67(15):1846–58.

    CrossRef  Google Scholar 

  155. Maron MS, Olivotto I, Harrigan C, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;124(1):40–7.

    CAS  CrossRef  Google Scholar 

  156. Harrigan CJ, Appelbaum E, Maron BJ, et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 2008;101(5):668–73.

    CrossRef  Google Scholar 

  157. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    Google Scholar 

  158. Weissler-Snir A, Chan RH, Adler A, Care M, et al. Usefulness of 14-day Holter for detection of nonsustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2016;118(8):1258–63.

    CrossRef  Google Scholar 

  159. Safvi A. Linguine sign. Radiology. 2000;216(3):838–9.

    CAS  CrossRef  Google Scholar 

  160. Berg WA, Nguyen TK, Middleton MS, Soo MS, Pennello G, Brown SL. MR imaging of extracapsular silicone from breast implants: diagnostic pitfalls. AJR Am J Roentgenol. 2002;178(2):465–72.

    CrossRef  Google Scholar 

  161. Rahbar H, Partridge SC. Multiparametric breast MRI of breast cancer. Magn Reson Imaging Clin N Am. 2016;24(1):223–38.

    CrossRef  Google Scholar 

  162. Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol. 2017;90(1069):20160715.

    CrossRef  Google Scholar 

  163. Sapate SG, Mahajan A, Talbar SN, Sable N, Desai S, Thakur M. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Comput Methods Prog Biomed. 2018;163:1–20.

    CrossRef  Google Scholar 

  164. Ouyang YL, Zhou ZH, Wu WW, Tian J, Xu F, Wu SC, Tsui PH. A review of ultrasound detection methods for breast microcalcification. Math Biosci Eng. 2019;16(4):1761–85.

    CrossRef  Google Scholar 

  165. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther. 1951;65(1):1–11.

    CAS  Google Scholar 

  166. Wang Y, Wang J, Wang H, Yang X, Chang L, Li Q. Comparison of mammography and ultrasonography for tumor size of DCIS of breast cancer. Curr Med Imaging Rev. 2019;15(2):209–13.

    CrossRef  Google Scholar 

  167. Homer MJ, D’Orsi CJ, Sitzman SB. Dermal calcifications in fixed orientation: the tattoo sign. Radiology. 1994;92(1):161–3.

    CrossRef  Google Scholar 

  168. Loffman Felman RL. The tattoo sign. Radiology. 2002;223(2):481–2.

    CrossRef  Google Scholar 

  169. Ozturk E, Yucesoy C, Onal B, Han U, Seker G, Hekimoglu B. Mammographic and ultrasonographic findings of different breast adenosis lesions. J Belg Soc Radiol. 2015;99(1):21–7.

    CAS  CrossRef  Google Scholar 

  170. Park GE, Kim SH, Lee JM, Kang BJ, Chae BJ. Comparison of positive predictive values of categorization of suspicious calcifications using the 4th and 5th editions of BI-RADS. AJR Am J Roentgenol. 2019;213(3):710–5.

    CrossRef  Google Scholar 

Suggested Reading for This Chapter

  • Algın O, Gökalp G, Topal U. Signs in chest imaging. Diagn Interv Radiol. 2011;17(1):18–29.

    Google Scholar 

  • Chiarenza A, Esposto Ultimo L, Falsaperla D, et al. Chest imaging using signs, symbols, and naturalistic images: a practical guide for radiologists and non-radiologists. Insights Imaging. 2019;10(1):114.

    CrossRef  Google Scholar 

  • Collins J. CT signs and patterns of lung disease. Radiol Clin N Am. 2001;39(6):1115–35.

    CAS  CrossRef  Google Scholar 

  • Franquet T, Müller NL, Giménez A, Guembe P, de La Torre J, Bagué S. Spectrum of pulmonary aspergillosis: histologic, clinical, and radiologic findings. Radiographics. 2001;21(4):825–37.

    CAS  CrossRef  Google Scholar 

  • Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722.

    CrossRef  Google Scholar 

  • Okada F, Ando Y, Yoshitake S, et al. Clinical/pathologic correlations in 553 patients with primary centrilobular findings on high-resolution CT scan of the thorax. Chest. 2007;132(6):1939–48.

    CrossRef  Google Scholar 

  • Shimon G, Yonit WW, Gabriel I, Naama BR, Nissim A. The “tree-in-bud” pattern on chest CT: radiologic and microbiologic correlation. Lung. 2015;193(5):823–9.

    CrossRef  Google Scholar 

  • Zompatori M, Bnà C, Poletti V, et al. Diagnostic imaging of diffuse infiltrative disease of the lung. Respiration. 2004;71(1):4–19.

    CrossRef  Google Scholar 

Download references

Chapter 3.

What imaging technique is most favored for assessing mediastinal masses?

While evaluating mediastinal masses, a contrast-enhanced CT chest is usually performed. This allows for delineation between the vasculature and the adjacent structures such as lymph nodes, esophagus. CT allows for the evaluation of masses based on the anatomic location.

What projection will demonstrate the lung apices superior to shadow of clavicles?

The AP lordotic projection is often used to evaluate suspicious areas within the lung apices that appeared obscured by overlying soft tissue, upper ribs or the clavicles on previous chest views (e.g. in cases of tuberculosis or tumor).

In what position can the chest be visualized?

The standard chest radiograph is acquired with the patient standing up, and with the X-ray beam passing through the patient from Posterior to Anterior (PA). The chest X-ray image produced is viewed as if looking at the patient from the front, face-to-face. The heart is on the right side of the image as you look at it.