What was one main reason electric motors were significant to the industrialization of the late 19th century?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Top Questions

Where and when did the Industrial Revolution take place?

How did the Industrial Revolution change economies?

How did the Industrial Revolution change society?

What were some important inventions of the Industrial Revolution?

Who were some important inventors of the Industrial Revolution? (adsbygoogle = window.adsbygoogle || []).push({});

Industrial Revolution, in modern history, the process of change from an agrarian and handicraft economy to one dominated by industry and machine manufacturing. These technological changes introduced novel ways of working and living and fundamentally transformed society. This process began in Britain in the 18th century and from there spread to other parts of the world. Although used earlier by French writers, the term Industrial Revolution was first popularized by the English economic historian Arnold Toynbee (1852–83) to describe Britain’s economic development from 1760 to 1840. Since Toynbee’s time the term has been more broadly applied as a process of economic transformation than as a period of time in a particular setting. This explains why some areas, such as China and India, did not begin their first industrial revolutions until the 20th century, while others, such as the United States and western Europe, began undergoing “second” industrial revolutions by the late 19th century.

A brief treatment of the Industrial Revolution follows. For full treatment of the Industrial Revolution as it occurred in Europe, see Europe, history of: The Industrial Revolution.

Characteristics of the Industrial Revolution

The main features involved in the Industrial Revolution were technological, socioeconomic, and cultural. The technological changes included the following: (1) the use of new basic materials, chiefly iron and steel, (2) the use of new energy sources, including both fuels and motive power, such as coal, the steam engine, electricity, petroleum, and the internal-combustion engine, (3) the invention of new machines, such as the spinning jenny and the power loom that permitted increased production with a smaller expenditure of human energy, (4) a new organization of work known as the factory system, which entailed increased division of labour and specialization of function, (5) important developments in transportation and communication, including the steam locomotive, steamship, automobile, airplane, telegraph, and radio, and (6) the increasing application of science to industry. These technological changes made possible a tremendously increased use of natural resources and the mass production of manufactured goods.

There were also many new developments in nonindustrial spheres, including the following: (1) agricultural improvements that made possible the provision of food for a larger nonagricultural population, (2) economic changes that resulted in a wider distribution of wealth, the decline of land as a source of wealth in the face of rising industrial production, and increased international trade, (3) political changes reflecting the shift in economic power, as well as new state policies corresponding to the needs of an industrialized society, (4) sweeping social changes, including the growth of cities, the development of working-class movements, and the emergence of new patterns of authority, and (5) cultural transformations of a broad order. Workers acquired new and distinctive skills, and their relation to their tasks shifted; instead of being craftsmen working with hand tools, they became machine operators, subject to factory discipline. Finally, there was a psychological change: confidence in the ability to use resources and to master nature was heightened.

What was one main reason electric motors were significant to the industrialization of the late 19th century?

Britannica Quiz

European History

What was the name of Franz Ferdinand’s assassin? Who was known as the Iron Chancellor? From the Irish famine to Lady Godiva, journey through European history in this quiz.

  • Spinning and weaving

    The creation of the following ingenious machines made possible the mass production of high-quality cotton and woolen thread and yarn and helped transform Great Britain into the world’s leading manufacturer of textiles in the second half of the 18th century.

    The spinning jenny. About 1764 James Hargreaves, a poor uneducated spinner and weaver living in Lancashire, England, conceived a new kind of spinning machine that would draw thread from eight spindles simultaneously instead of just one, as in the traditional spinning wheel. The idea reportedly occurred to him after his daughter Jenny accidentally knocked over the family’s spinning wheel; the spindle continued to turn even as the machine lay on the floor, suggesting to Hargreaves that a single wheel could turn several spindles at once. He obtained a patent for the spinning jenny in 1770.

    The water frame. So called because it was powered by a waterwheel, the water frame, patented in 1769 by Richard Arkwright, was the first fully automatic and continuously operating spinning machine. It produced stronger and greater quantities of thread than the spinning jenny did. Because of its size and power source, the water frame could not be housed in the homes of spinners, as earlier machines had been. Instead, it required a location in a large building near a fast-running stream. Arkwright and his partners built several such factories in the mountainous areas of Britain. Spinners, including child laborers, thereafter worked in ever-larger factories rather than in their homes.

    The spinning mule. About 1779 Samuel Crompton invented the spinning mule, which he designed by combining features of the spinning jenny and the water frame. His machine was capable of producing fine as well as coarse yarn and made it possible for a single operator to work more than 1,000 spindles simultaneously. Unfortunately, Crompton, being poor, lacked the money to patent his idea. He was cheated out of his invention by a group of manufacturers who paid him much less than they had promised for the design. The spinning mule was eventually used in hundreds of factories throughout the British textile industry.

  • The steam engine

    Through its application in manufacturing and as a power source in ships and railway locomotives, the steam engine increased the productive capacity of factories and led to the great expansion of national and international transportation networks in the 19th century.

    Watt’s steam engine. In Britain in the 17th century, primitive steam engines were used to pump water out of mines. In 1765 Scottish inventor James Watt, building on earlier improvements, increased the efficiency of steam pumping engines by adding a separate condenser, and in 1781 he designed a machine to rotate a shaft rather than generate the up-and-down motion of a pump. With further improvements in the 1780s, Watt’s engine became a primary power source in paper mills, flour mills, cotton mills, iron mills, distilleries, canals, and waterworks, making Watt a wealthy man.

    The steam locomotive. British engineer Richard Trevithick is generally recognized as the inventor of the steam railway locomotive (1803), an application of the steam engine that Watt himself had once dismissed as impractical. Trevithick also adapted his engine to propel a barge by turning paddle wheels and to operate a dredger. Trevithick’s engine, which generated greater power than Watt’s by operating at higher pressures, soon became common in industrial applications in Britain, displacing Watt’s less-efficient design. The first steam-powered locomotive to carry paying passengers was the Active (later renamed the Locomotion), designed by English engineer George Stephenson, which made its maiden run in 1825. For a new passenger railroad line between Liverpool and Manchester, completed in 1830, Stephenson and his son designed the Rocket, which achieved a speed of 36 miles (58 km) per hour.

    Steamboats and steamships. Steamboats and other steamships were pioneered in France, Britain, and the United States in the late 18th and early 19th centuries. The first commercially successful paddle steamer, the North River Steamboat, designed by American engineer Robert Fulton, traveled up the Hudson River from New York City to Albany, New York, in 1807 at a speed of about 5 miles (8 km) per hour. Eventually, ever larger steamboats delivered cargo as well as passengers over hundreds of miles of inland waterways of the eastern and central United States, especially the Mississippi River. The first transoceanic voyage to employ steam power was completed in 1819 by the Savannah, an American sailing ship with an auxiliary steam-powered paddle. It sailed from Savannah, Georgia, to Liverpool in a little more than 27 days, though its paddle operated for only 85 hours of the voyage. By the second half of the 19th century, ever larger and faster steamships were regularly carrying passengers, cargo, and mail across the North Atlantic, a service dubbed “the Atlantic Ferry.”

  • Harnessing electricity

    In the early 19th century, scientists in Europe and the United States explored the relationship between electricity and magnetism, and their research soon led to practical applications of electromagnetic phenomena.

    Electric generators and electric motors. In the 1820s and ’30s British scientist Michael Faraday demonstrated experimentally that passing an electric current through a coil of wire between two poles of a magnet would cause the coil to turn, while turning a coil of wire between two poles of a magnet would generate an electric current in the coil (electromagnetic induction). The first phenomenon eventually became the basis of the electric motor, which converts electrical energy into mechanical energy, while the second eventually became the basis of the electric generator, or dynamo, which converts mechanical energy into electrical energy. Although both motors and generators underwent substantial improvements in the mid-19th century, their practical employment on a large scale depended on the later invention of other machines—namely, electrically powered trains and electric lighting.

    Electric railways and tramways. The first electric railway, intended for use in urban mass transit, was demonstrated by German engineer Werner von Siemens in Berlin in 1879. By the early 20th century, electric railways were operating within and between several major cities in Europe and the United States. The first electrified section of London’s subway system, called the London Underground, began operation in 1890.

    The incandescent lamp.In 1878–79 Joseph Wilson Swan in England and later Thomas Alva Edison in the United States independently invented a practical electric incandescent lamp, which produces continuous light by heating a filament with an electric current in a vacuum (or near vacuum). Both inventors applied for patents, and their legal wrangling ended only after they agreed to form a joint company in 1883. Edison has since been given most of the credit for the invention, because he also devised the power lines and other equipment necessary for a practical lighting system. During the next 50 years, electric incandescent lamps gradually replaced gas and kerosene lamps as the major form of artificial light in urban areas, though gas-lit street lamps persisted in Britain until the mid-20th century.

  • The telegraph and the telephone

    Two inventions of the 19th century, the electric telegraph and the electric telephone, made reliable instantaneous communication over great distances possible for the first time. Their effects on commerce, diplomacy, military operations, journalism, and myriad aspects of everyday life were nearly immediate and proved to be long-lasting.

    The telegraph. The first practical electric telegraph systems were created almost simultaneously in Britain and the United States in 1837. In the device developed by British inventors William Fothergill Cooke and Charles Wheatstone, needles on a mounting plate at a receiver pointed to specific letters or numbers when electric current passed through attached wires. American artist and inventor Samuel F.B. Morse created his own electric telegraph and, more famously, a universal code, since known as Morse Code, that could be used in any system of telegraphy. The code, consisting of a set of symbolic dots, dashes, and spaces, was soon adopted (in modified form to accommodate diacritics) throughout the world. A demonstration telegraph line between Washington, D.C., and Baltimore, Maryland, was completed in 1844. The first message sent on it was, “What hath God wrought!” Telegraph cables were first laid across the English Channel in 1851 and across the Atlantic Ocean in 1858. In the United States the spread of telegraphic communication through the growth of private telegraph companies such as Western Union aided the maintenance of law and order in the Western territories and the control of traffic on the railroads. What’s more, it enabled the transmission of national and international news through wire services such as the Associated Press. In 1896 Italian physicist and inventor Guglielmo Marconi perfected a system of wireless telegraphy (radiotelegraphy) that had important military applications in the 20th century.

    The telephone. In 1876 Scottish-born American scientist Alexander Graham Bell successfully demonstrated the telephone, which transmitted sound, including that of the human voice, by means of an electric current. Bell’s device consisted of two sets of metallic reeds (membranes) and electromagnetic coils. Sound waves produced near one membrane caused it to vibrate at certain frequencies, which induced corresponding currents in the electromagnetic coil connected to it, and those currents then flowed to the other coil, which in turn caused the other membrane to vibrate at the same frequencies, reproducing the original sound waves. The first “telephone call” (successful electric transmission of intelligible human speech) took place between two rooms of Bell’s Boston laboratory on March 10, 1876, when Bell summoned his assistant, Thomas Watson, with the famous words that Bell transcribed in his notes as “Mr. Watson—Come here—I want to see you.” Initially the telephone was a curiosity or a toy for the rich, but by the mid-20th century it had become a common household instrument, billions of which were in use throughout the world.

  • The internal-combustion engine and the automobile

    Among the most-consequential inventions of the late Industrial Revolution were the internal-combustion engine and, along with it, the gasoline-powered automobile. The automobile, which replaced the horse and carriage in Europe and the United States, offered greater freedom of travel for ordinary people, facilitated commercial links between urban and rural areas, influenced urban planning and the growth of large cities, and contributed to severe air-pollution problems in urban areas.

    The internal-combustion engine. The internal-combustion engine generates work through the combustion inside the engine of a compressed mixture of oxidizer (air) and fuel, the hot gaseous products of combustion pushing against moving surfaces of the engine, such as a piston or a rotor. The first commercially successful internal-combustion engine, which used a mixture of coal gas and air, was constructed about 1859 by Belgian inventor Étienne Lenoir. Initially expensive to run and inefficient, it was significantly modified in 1878 by German engineer Nikolaus Otto, who introduced the four-stroke cycle of induction-compression-firing-exhaust. Because of their greater efficiency, durability, and ease of use, gas-powered engines based on Otto’s design soon replaced steam engines in small industrial applications. The first gasoline-powered internal-combustion engine, also based on Otto’s four-stroke design, was invented by German engineer Gottlieb Daimler in 1885. Soon afterward, in the early 1890s, another German engineer, Rudolf Diesel, constructed an internal-combustion engine (the diesel engine) that used heavy oil instead of gasoline and was more efficient than the Otto engine. It was widely used to power locomotives, heavy machinery, and submarines.

    The automobile. Because of its efficiency and light weight, the gasoline-powered engine was ideal for light vehicular locomotion. The first motorcycle and motorcar powered by an internal-combustion engine were constructed by Daimler and Karl Benz, respectively, in 1885. By the 1890s a nascent industry in continental Europe and the United States was producing increasingly sophisticated automobiles for mostly wealthy customers. Less than 20 years later American industrialist Henry Ford perfected assembly-line methods of manufacturing to produce millions of automobiles (especially the Model T) and light trucks annually. The great economies of scale he achieved made automobile ownership affordable for Americans of average income, a major development in the history of transportation.

  • What was one main reason electric motors were significant to the industrialization of the 19th century?

    HIS Ch 17-19.

    Why was the invention of electric motors significant to industrialization?

    The induction motor is one of the most important inventions in modern history. It turned the wheels of progress at a new speed and officially kicked off the second industrial revolution by drastically improving energy generation efficiency and making the long-distance distribution of electricity possible.

    Why was the development of the alternating current electric system significant quizlet?

    Why was the development of the alternating current system significant? it enables electricity to be transmitted across long distances.

    What was the significance of the railcars connected to Pullman cars during the Pullman strike?

    What was the significance of the railcars connected to Pullman cars during the Pullman strike? They were used as justification for a federal intervention, as President Cleveland claimed that the strike must be ended because it interfered with the mail.