What extends like roots from the cell body to receive incoming messages from thousands of adjoining neurons?

1. Park J.W., Vahidi B., Taylor A.M., Rhee S.W., Jeon N.L. Microfluidic culture platform for neuroscience research. Nat. Protoc. 2006;1(4):2128–2136. doi: 10.1038/nprot.2006.316. [PubMed] [CrossRef] [Google Scholar]

2. Tessier-Lavigne M., Goodman C.S. The molecular biology of axon guidance. Science. 1996;274(5290):1123–1133. doi: 10.1126/science.274.5290.1123. [PubMed] [CrossRef] [Google Scholar]

3. Nédelec S., Peljto M., Shi P., Amoroso M.W., Kam L.C., Wichterle H. Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues. J. Neurosci. 2012;32(4):1496–1506. doi: 10.1523/JNEUROSCI.4176-11.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Nishikimi M., Oishi K., Nakajima K. Axon guidance mechanisms for establishment of callosal connections. Neural. Plast. 2013;2013:149060. doi: 10.1155/2013/149060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Deck M., Lokmane L., Chauvet S., Mailhes C., Keita M., Niquille M., Yoshida M., Yoshida Y., Lebrand C., Mann F., Grove E.A., Garel S. Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron. 2013;77(3):472–484. doi: 10.1016/j.neuron.2012.11.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Plazas P.V., Nicol X., Spitzer N.C. Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proc. Natl. Acad. Sci. USA. 2013;110(4):1524–1529. doi: 10.1073/pnas.1213048110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Leung L.C., Urbančič V., Baudet M.L., Dwivedy A., Bayley T.G., Lee A.C., Harris W.A., Holt C.E. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat. Neurosci. 2013;16(2):166–173. doi: 10.1038/nn.3290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Wright K.M., Lyon K.A., Leung H., Leahy D.J., Ma L., Ginty D.D. Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron. 2012;76(5):931–944. doi: 10.1016/j.neuron.2012.10.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Duman-Scheel M. Deleted in Colorectal Cancer (DCC) pathfinding: axon guidance gene finally turned tumor suppressor. Curr. Drug Targets. 2012;13(11):1445–1453. doi: 10.2174/138945012803530215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Huettl R.E., Haehl T., Huber A.B. Fasciculation and guidance of spinal motor axons in the absence of FGFR2 signaling. PLoS One. 2012;7(7):e41095. doi: 10.1371/journal.pone.0041095. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. McAllister A.K. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 2007;30:425–450. doi: 10.1146/annurev.neuro.29.051605.112830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Ko J., Fuccillo M.V., Malenka R.C., Südhof T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron. 2009;64(6):791–798. doi: 10.1016/j.neuron.2009.12.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Siddiqui T.J., Pancaroglu R., Kang Y., Rooyakkers A., Craig A.M. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J. Neurosci. 2010;30(22):7495–7506. doi: 10.1523/JNEUROSCI.0470-10.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Bennett S.A., Valenzuela N., Xu H., Franko B., Fai S., Figeys D. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease. Front. Physiol. 2013;4:168. doi: 10.3389/fphys.2013.00168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Carasatorre M., Ramirez-Amaya V., Diaz C.S. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing. Neurologia. 2013 pii: S0213-4853(12)00320-9. [PubMed] [Google Scholar]

16. Martin S.J., Grimwood P.D., Morris R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 2000;23:649–711. doi: 10.1146/annurev.neuro.23.1.649. [PubMed] [CrossRef] [Google Scholar]

17. Hashimoto T., Yamada M., Iwai T., Saitoh A., Hashimoto E., Ukai W., Saito T., Yamada M. Plasticity-related gene 1 is important for survival of neurons derived from rat neural stem cells. J. Neurosci. Res. 2013;91(11):1402–1407. doi: 10.1002/jnr.23269. [PubMed] [CrossRef] [Google Scholar]

18. Udupa K., Chen R. Motor cortical plasticity in Parkinson’s disease. Front. Neurol. 2013;4:128. doi: 10.3389/fneur.2013.00128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Barth A.L., Kuhlman S.J. The many layers of specification and plasticity in the neocortex. Neuron. 2013;79(5):829–831. doi: 10.1016/j.neuron.2013.08.021. [PubMed] [CrossRef] [Google Scholar]

20. Boulland J.L. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One. 2013;8(8):e71701. doi: 10.1371/journal.pone.0071701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Shiga S. Photoperiodic plasticity in circadian clock neurons in insects. Front. Physiol. 2013;4:69. doi: 10.3389/fphys.2013.00069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Lignani G., Ferrea E., Difato F., Amarù J., Ferroni E., Lugarà E., Espinoza S., Gainetdinov R.R., Baldelli P., Benfenati F. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Front. Mol. Neurosci. 2013;6:22. doi: 10.3389/fnmol.2013.00022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Judas M., Sedmak G., Kostovic I. The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum. Neurosci. 2013;7:423. doi: 10.3389/fnhum.2013.00423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Zhang H.L., Pan F., Hong D., Shenoy S.M., Singer R.H., Bassell G.J. Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J. Neurosci. 2003;23(16):6627–6637. [PMC free article] [PubMed] [Google Scholar]

25. Lapthanasupkul P. Ring1a/b polycomb proteins regulate the mesenchymal stem cell niche in continuously growing incisors. Dev. Biol. 2012;367(2):53–140. doi: 10.1016/j.ydbio.2012.04.029. [PubMed] [CrossRef] [Google Scholar]

26. Wang W.Y., Pan L., Su S.C., Quinn E.J., Sasaki M., Jimenez J.C., Mackenzie I.R., Huang E.J., Tsai L.H. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat. Neurosci. 2013;16(10):1383–1391. doi: 10.1038/nn.3514. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Ouyang Q. Christianson Syndrome Protein NHE6 Modulates TrkB Endosomal Signaling Required for Neuronal Circuit Development. Neuron. 2013;80(1):97–112. doi: 10.1016/j.neuron.2013.07.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Bangaru M.L., Weihrauch D., Tang Q.B., Zoga V., Hogan Q., Wu H.E. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol. Pain. 2013;9:47. doi: 10.1186/1744-8069-9-47. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev. 2013;8:17. doi: 10.1186/1749-8104-8-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Meziane H., Fraulob V., Riet F., Krezel W., Selloum M., Geffarth M., Acampora D., Hérault Y., Simeone A., Brand M., Dollé P., Rhinn M. The homeodomain factor Gbx1 is required for locomotion and cell specification in the dorsal spinal cord. PeerJ. 2013;1:e142. doi: 10.7717/peerj.142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Chang P.K., Verbich D., McKinney R.A. AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook. Eur. J. Neurosci. 2012;35(12):1908–1916. doi: 10.1111/j.1460-9568.2012.08165.x. [PubMed] [CrossRef] [Google Scholar]

32. Letso R.R., Bauer A.J., Lunn M.R., Yang W.S., Stockwell B.R. Small molecule screen reveals regulation of survival motor neuron protein abundance by Ras proteins. ACS Chem. Biol. 2013;8(5):914–922. doi: 10.1021/cb300374h. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Sun Y., Dong Z., Khodabakhsh H., Chatterjee S., Guo S. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides. PLoS One. 2012;7(4):e35645. doi: 10.1371/journal.pone.0035645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Schulte J., Sepp K.J., Wu C., Hong P., Littleton J.T. High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington’s disease model. PLoS One. 2011;6(8):e23841. doi: 10.1371/journal.pone.0023841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Walker G.M., Zeringue H.C., Beebe D.J. Microenvironment design considerations for cellular scale studies. Lab Chip. 2004;4(2):91–97. doi: 10.1039/b311214d. [PubMed] [CrossRef] [Google Scholar]

36. Banker G.A., Cowan W.M. Further observations on hippocampal neurons in dispersed cell culture. J. Comp. Neurol. 1979;187(3):469–493. doi: 10.1002/cne.901870302. [PubMed] [CrossRef] [Google Scholar]

37. Brewer G.J., Torricelli J.R., Evege E.K., Price P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 1993;35(5):567–576. doi: 10.1002/jnr.490350513. [PubMed] [CrossRef] [Google Scholar]

38. Dotti C.G., Sullivan C.A., Banker G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 1988;8(4):1454–1468. [PMC free article] [PubMed] [Google Scholar]

39. De Vos K.J., Grierson A.J., Ackerley S., Miller C.C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 2008;31:151–173. doi: 10.1146/annurev.neuro.31.061307.090711. [PubMed] [CrossRef] [Google Scholar]

40. Cheng H.C., Ulane C.M., Burke R.E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010;67(6):715–725. doi: 10.1002/ana.21995. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Gross P.G. Applications of microfluidics for neuronal studies. J. Neurol. Sci. 2007;252(2):135–143. doi: 10.1016/j.jns.2006.11.009. [PubMed] [CrossRef] [Google Scholar]

42. Wang J., Ren L., Li L., Liu W., Zhou J., Yu W., Tong D., Chen S. Microfluidics: a new cosset for neurobiology. Lab Chip. 2009;9(5):644–652. doi: 10.1039/B813495B. [PubMed] [CrossRef] [Google Scholar]

43. Taylor A., Jeon N.L. Microfluidic and Compartmentalized Platforms for Neurobiological Research. Crit. Rev.™. Biomed. Eng. (N.Y.) 2011;39(3):185–200. [PubMed] [Google Scholar]

44. Park J.W., Kim H.J., Kang M.W., Jeon N.L. Advances in microfluidics-based experimental methods for neuroscience research. Lab Chip. 2013;13(4):509–521. doi: 10.1039/c2lc41081h. [PubMed] [CrossRef] [Google Scholar]

45. Park J.W., Vahidi B., Taylor A.M., Rhee S.W., Jeon N.L. Microfluidic culture platform for neuroscience research. Nat. Protoc. 2006;1(4):2128–2136. doi: 10.1038/nprot.2006.316. [PubMed] [CrossRef] [Google Scholar]

46. Campenot R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA. 1977;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Campenot R.B., MacInnis B.L. Retrograde transport of neurotrophins: fact and function. J. Neurobiol. 2004;58(2):217–229. doi: 10.1002/neu.10322. [PubMed] [CrossRef] [Google Scholar]

48. Campenot B., Lund K., Senger D.L. Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures. J. Cell Biol. 1996;135(3):701–709. doi: 10.1083/jcb.135.3.701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. MacInnis B.L., Campenot R.B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science. 2002;295(5559):1536–1539. doi: 10.1126/science.1064913. [PubMed] [CrossRef] [Google Scholar]

50. Eng H., Lund K., Campenot R.B. Synthesis of β-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J. Neurosci. 1999;19(1):1–9. doi: 10.1006/nbdi.2000.0359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. McKerracher L. Spinal cord repair: strategies to promote axon regeneration. Neurobiol. Dis. 2001;8(1):11–18. doi: 10.1006/nbdi.2000.0359. [PubMed] [CrossRef] [Google Scholar]

52. Senger D.L., Campenot R.B. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 1997;138(2):411–421. doi: 10.1083/jcb.138.2.411. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Ivins K.J., Bui E.T., Cotman C.W. β-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 1998;5(5):365–378. doi: 10.1006/nbdi.1998.0228. [PubMed] [CrossRef] [Google Scholar]

54. Torre E.R., Steward O. Demonstration of local protein synthesis within dendrites using a new cell culture system that permits the isolation of living axons and dendrites from their cell bodies. J. Neurosci. 1992;12(3):762–772. [PMC free article] [PubMed] [Google Scholar]

55. Wu K.Y., Hengst U., Cox L.J., Macosko E.Z., Jeromin A., Urquhart E.R., Jaffrey S.R. Local translation of RhoA regulates growth cone collapse. Nature. 2005;436(7053):1020–1024. doi: 10.1038/nature03885. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Poon M.M., Choi S.H., Jamieson C.A., Geschwind D.H., Martin K.C. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J. Neurosci. 2006;26(51):13390–13399. doi: 10.1523/JNEUROSCI.3432-06.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Willis D.E., Twiss J.L. RNA Detection and Visualization. Springer; 2011. Profiling axonal mRNA transport. pp. 335–352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Willis D.E., van Niekerk E.A., Sasaki Y., Mesngon M., Merianda T.T., Williams G.G., Kendall M., Smith D.S., Bassell G.J., Twiss J.L. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 2007;178(6):965–980. doi: 10.1083/jcb.200703209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Willis D., Li K.W., Zheng J.Q., Chang J.H., Smit A.B., Kelly T., Merianda T.T., Sylvester J., van Minnen J., Twiss J.L. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 2005;25(4):778–791. doi: 10.1523/JNEUROSCI.4235-04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Clark P., Britland S., Connolly P. Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci. 1993;105(Pt 1):203–212. [PubMed] [Google Scholar]

61. Kam L., Shain W., Turner J.N., Bizios R. Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials. 2001;22(10):1049–1054. doi: 10.1016/S0142-9612(00)00352-5. [PubMed] [CrossRef] [Google Scholar]

62. von Philipsborn A.C., Lang S., Bernard A., Loeschinger J., David C., Lehnert D., Bastmeyer M., Bonhoeffer F. Microcontact printing of axon guidance molecules for generation of graded patterns. Nat. Protoc. 2006;1(3):1322–1328. doi: 10.1038/nprot.2006.251. [PubMed] [CrossRef] [Google Scholar]

63. Shi P., Shen K., Kam L.C. Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev. Neurobiol. 2007;67(13):1765–1776. doi: 10.1002/dneu.20553. [PubMed] [CrossRef] [Google Scholar]

64. Shi P., Nedelec S., Wichterle H., Kam L.C. Combined microfluidics/protein patterning platform for pharmacological interrogation of axon pathfinding. Lab Chip. 2010;10(8):1005–1010. doi: 10.1039/b922143c. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Fricke R., Zentis P.D., Rajappa L.T., Hofmann B., Banzet M., Offenhäusser A., Meffert S.H. Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials. 2011;32(8):2070–2076. doi: 10.1016/j.biomaterials.2010.11.036. [PubMed] [CrossRef] [Google Scholar]

66. Gomez N., Lu Y., Chen S., Schmidt C.E. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials. 2007;28(2):271–284. doi: 10.1016/j.biomaterials.2006.07.043. [PubMed] [CrossRef] [Google Scholar]

67. Mai J., Fok L., Gao H., Zhang X., Poo M.M. Axon initiation and growth cone turning on bound protein gradients. J. Neurosci. 2009;29(23):7450–7458. doi: 10.1523/JNEUROSCI.1121-09.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Shelly M. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron. 2011;71(3):433–446. doi: 10.1016/j.neuron.2011.06.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Scott M.A., Wissner-Gross Z.D., Yanik M.F. Ultra-rapid laser protein micropatterning: screening for directed polarization of single neurons. Lab Chip. 2012;12(12):2265–2276. doi: 10.1039/c2lc21105j. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Sorribas H., Padeste C., Tiefenauer L. Photolithographic generation of protein micropatterns for neuron culture applications. Biomaterials. 2002;23(3):893–900. doi: 10.1016/S0142-9612(01)00199-5. [PubMed] [CrossRef] [Google Scholar]

71. Vogt A.K., Lauer L., Knoll W., Offenhäusser A. Micropatterned substrates for the growth of functional neuronal networks of defined geometry. Biotechnol. Prog. 2003;19(5):1562–1568. doi: 10.1021/bp034016f. [PubMed] [CrossRef] [Google Scholar]

72. Feinerman O., Rotem A., Moses E. Reliable neuronal logic devices from patterned hippocampal cultures. Nat. Phys. 2008;4(12):967–973. doi: 10.1038/nphys1099. [CrossRef] [Google Scholar]

73. Frimat J.P., Sisnaiske J., Subbiah S., Menne H., Godoy P., Lampen P., Leist M., Franzke J., Hengstler J.G., van Thriel C., West J. The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip. 2010;10(6):701–709. doi: 10.1039/b922193j. [PubMed] [CrossRef] [Google Scholar]

74. Hardelauf H., Sisnaiske J., Taghipour-Anvari A.A., Jacob P., Drabiniok E., Marggraf U., Frimat J.P., Hengstler J.G., Neyer A., van Thriel C., West J. High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. Lab Chip. 2011;11(16):2763–2771. doi: 10.1039/c1lc20257j. [PubMed] [CrossRef] [Google Scholar]

75. Ma W., Liu Q.Y., Jung D., Manos P., Pancrazio J.J., Schaffner A.E., Barker J.L., Stenger D.A. Central neuronal synapse formation on micropatterned surfaces. Brain Res. Dev. Brain Res. 1998;111(2):231–243. doi: 10.1016/S0165-3806(98)00142-4. [PubMed] [CrossRef] [Google Scholar]

76. Czöndör K., Garcia M., Argento A., Constals A., Breillat C., Tessier B., Thoumine O. Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat. Commun. 2013;4:2252. doi: 10.1038/ncomms3252. [PubMed] [CrossRef] [Google Scholar]

77. Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442(7101):368–373. doi: 10.1038/nature05058. [PubMed] [CrossRef] [Google Scholar]

78. Taylor A.M., Jeon N.L. Micro-scale and microfluidic devices for neurobiology. Curr. Opin. Neurobiol. 2010;20(5):640–647. doi: 10.1016/j.conb.2010.07.011. [PubMed] [CrossRef] [Google Scholar]

79. Park J.K., Yeon J.H. Microfluidic cell culture systems for cellular analysis. Biochip. 2007;1:17–27. [Google Scholar]

80. Dexter J.P., Parker W. Parallel combinatorial chemical synthesis using single-layer poly(dimethylsiloxane) microfluidic devices. Biomicrofluidics. 2009;3(3):34106. doi: 10.1063/1.3230501. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Gorkin R., Park J., Siegrist J., Amasia M., Lee B.S., Park J.M., Kim J., Kim H., Madou M., Cho Y.K. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–1773. doi: 10.1039/b924109d. [PubMed] [CrossRef] [Google Scholar]

82. Atencia J., Beebe D.J. Controlled microfluidic interfaces. Nature. 2005;437(7059):648–655. doi: 10.1038/nature04163. [PubMed] [CrossRef] [Google Scholar]

83. Guo M.T., Rotem A., Heyman J.A., Weitz D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012;12(12):2146–2155. doi: 10.1039/c2lc21147e. [PubMed] [CrossRef] [Google Scholar]

84. George M., Whitesides E.O., Takayama S., Jiang X., Ingber D.E. Soft lithography in biology and biochemiestry. Annu. Rev. Biomed. Eng. 2001;3:335–373. doi: 10.1146/annurev.bioeng.3.1.335. [PubMed] [CrossRef] [Google Scholar]

85. Marcus J.S., Anderson W.F., Quake S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 2006;78(9):3084–3089. doi: 10.1021/ac0519460. [PubMed] [CrossRef] [Google Scholar]

86. Jang K., Ngo H.T., Tanaka Y., Xu Y., Mawatari K., Kitamori T. Development of a microfluidic platform for single-cell secretion analysis using a direct photoactive cell-attaching method. Anal. Sci. 2011;27(10):973–978. doi: 10.2116/analsci.27.973. [PubMed] [CrossRef] [Google Scholar]

87. van den Brink F.T., Gool E., Frimat J.P., Bomer J., van den Berg A., Le Gac S. Parallel single-cell analysis microfluidic platform. Electrophoresis. 2011;32(22):3094–3100. doi: 10.1002/elps.201100413. [PubMed] [CrossRef] [Google Scholar]

88. Li L., Nachtergaele S., Seddon A.M., Tereshko V., Ponomarenko N., Ismagilov R.F. Simple host-guest chemistry to modulate the process of concentration and crystallization of membrane proteins by detergent capture in a microfluidic device. J. Am. Chem. Soc. 2008;130(43):14324–14328. doi: 10.1021/ja805361j. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA. 2002;99(26):16531–16536. doi: 10.1073/pnas.262485199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Inamdar N.K., Borenstein J.T. Microfluidic cell culture models for tissue engineering. Curr. Opin. Biotechnol. 2011;22(5):681–689. doi: 10.1016/j.copbio.2011.05.512. [PubMed] [CrossRef] [Google Scholar]

91. Webster A., Greenman J., Haswell S.J. Development of microfluidic devices for biomedical and clinical application. J. Chem. Technol. Biotechnol. 2011;86(1):10–17. doi: 10.1002/jctb.2482. [CrossRef] [Google Scholar]

92. Millet L.J., Gillette M.U. New perspectives on neuronal development via microfluidic environments. Trends Neurosci. 2012;35(12):752–761. doi: 10.1016/j.tins.2012.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. El-Ali J., Sorger P.K., Jensen K.F. Cells on chips. Nature. 2006;442(7101):403–411. doi: 10.1038/nature05063. [PubMed] [CrossRef] [Google Scholar]

94. Shin H.S., Kim H.J., Sim S.J., Jeon N.L. Shear stress effect on transfection of neurons cultured in microfluidic devices. J. Nanosci. Nanotechnol. 2009;9(12):7330–7335. doi: 10.1166/jnn.2009.1769. [PubMed] [CrossRef] [Google Scholar]

95. Regehr K.J., Domenech M., Koepsel J.T., Carver K.C., Ellison-Zelski S.J., Murphy W.L., Schuler L.A., Alarid E.T., Beebe D.J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip. 2009;9(15):2132–2139. doi: 10.1039/b903043c. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Toepke M.W., Beebe D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip. 2006;6(12):1484–1486. doi: 10.1039/b612140c. [PubMed] [CrossRef] [Google Scholar]

97. Heo Y.S., Cabrera L.M., Song J.W., Futai N., Tung Y.C., Smith G.D., Takayama S. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 2007;79(3):1126–1134. doi: 10.1021/ac061990v. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Unger M.A., Chou H.P., Thorsen T., Scherer A., Quake S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–116. doi: 10.1126/science.288.5463.113. [PubMed] [CrossRef] [Google Scholar]

99. McDonald J.C., Duffy C.D., Anderson J.R., Whitesides G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000;21:27–40. doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C. [PubMed] [CrossRef] [Google Scholar]

100. Taylor A.M. Microfluidic multicompartment device for neuroscience research. Langmuir. 2003;19(5):1551–1556. doi: 10.1021/la026417v. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Millet L.J., Stewart M.E., Nuzzo R.G., Gillette M.U. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip. 2010;10(12):1525–1535. doi: 10.1039/c001552k. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Taylor A.M., Dieterich D.C., Ito H.T., Kim S.A., Schuman E.M. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 2010;66(1):57–68. doi: 10.1016/j.neuron.2010.03.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Dworak B.J., Wheeler B.C. Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab Chip. 2009;9(3):404–410. doi: 10.1039/B806689B. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Pan L., Alagapan S., Franca E., Brewer G.J., Wheeler B.C. Propagation of action potential activity in a predefined microtunnel neural network. J. Neural Eng. 2011;8(4):046031. doi: 10.1088/1741-2560/8/4/046031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Park J., Koito H., Li J., Han A. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip. 2012;12(18):3296–3304. doi: 10.1039/c2lc40303j. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Hosmane S., Yang I.H., Ruffin A., Thakor N., Venkatesan A. Circular compartmentalized microfluidic platform: Study of axon-glia interactions. Lab Chip. 2010;10(6):741–747. doi: 10.1039/b918640a. [PubMed] [CrossRef] [Google Scholar]

107. Park J.W., Kim H.J., Byun J.H., Ryu H.R., Jeon N.L. Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol. J. 2009;4(11):1573–1577. doi: 10.1002/biot.200900159. [PubMed] [CrossRef] [Google Scholar]

108. Dinh N-D. Microfluidic construction of minimalistic neuronal cocultures. Lab. Chip. 2013;13(7):12–1402. doi: 10.1039/c3lc41224e. [PubMed] [CrossRef] [Google Scholar]

109. Huang Y., Williams J.C., Johnson S.M. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip. 2012;12(12):2103–2117. doi: 10.1039/c2lc21142d. [PubMed] [CrossRef] [Google Scholar]

110. Crane M.M., Chung K., Stirman J., Lu H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip. 2010;10(12):1509–1517. doi: 10.1039/b927258e. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Zhan M., Chingozha L., Lu H. Enabling systems biology approaches through microfabricated systems. Anal. Chem. 2013;85(19):8882–8894. doi: 10.1021/ac401472y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Dickson B.J. Molecular mechanisms of axon guidance. Science. 2002;298(5600):1959–1964. doi: 10.1126/science.1072165. [PubMed] [CrossRef] [Google Scholar]

113. Zweifel L.S., Kuruvilla R., Ginty D.D. Functions and mechanisms of retrograde neurotrophin signalling. Nat. Rev. Neurosci. 2005;6(8):615–625. doi: 10.1038/nrn1727. [PubMed] [CrossRef] [Google Scholar]

114. Hur E.M., Yang I.H., Kim D.H., Byun J., Saijilafu, Xu W.L., Nicovich P.R., Cheong R., Levchenko A., Thakor N., Zhou F.Q. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc. Natl. Acad. Sci. USA. 2011;108(12):5057–5062. doi: 10.1073/pnas.1011258108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Bhattacharjee N., Li N., Keenan T.M., Folch A. A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol (Camb) 2010;2(11-12):669–679. doi: 10.1039/c0ib00038h. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356. doi: 10.1126/science.1072994. [PubMed] [CrossRef] [Google Scholar]

117. Ittner L.M., Götz J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 2011;12(2):65–72. doi: 10.1038/nrn2967. [PubMed] [CrossRef] [Google Scholar]

118. Dauer W., Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. doi: 10.1016/S0896-6273(03)00568-3. [PubMed] [CrossRef] [Google Scholar]

119. Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2005;2(8):599–605. doi: 10.1038/nmeth777. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Zhang K., Osakada Y., Vrljic M., Chen L., Mudrakola H.V., Cui B. Single-molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip. 2010;10(19):2566–2573. doi: 10.1039/c003385e. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Cohen M.S., Bas Orth C., Kim H.J., Jeon N.L., Jaffrey S.R. Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc. Natl. Acad. Sci. USA. 2011;108(27):11246–11251. doi: 10.1073/pnas.1012401108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Xie W., Zhang K., Cui B. Functional characterization and axonal transport of quantum dot labeled BDNF. Integr Biol (Camb) 2012;4(8):953–960. doi: 10.1039/c2ib20062g. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Mudrakola H.V., Zhang K., Cui B. Optically resolving individual microtubules in live axons. Structure. 2009;17(11):1433–1441. doi: 10.1016/j.str.2009.09.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Kim H.J., Park J.W., Byun J.H., Poon W.W., Cotman C.W., Fowlkes C.C., Jeon N.L. Quantitative analysis of axonal transport by using compartmentalized and surface micropatterned culture of neurons. ACS Chem. Neurosci. 2012;3(6):433–438. doi: 10.1021/cn3000026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Poon W.W., Blurton-Jones M., Tu C.H., Feinberg L.M., Chabrier M.A., Harris J.W., Jeon N.L., Cotman C.W. β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol. Aging. 2011;32(5):821–833. doi: 10.1016/j.neurobiolaging.2009.05.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Stoothoff W., Jones P.B., Spires-Jones T.L., Joyner D., Chhabra E., Bercury K., Fan Z., Xie H., Bacskai B., Edd J., Irimia D., Hyman B.T. Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport. J. Neurochem. 2009;111(2):417–427. doi: 10.1111/j.1471-4159.2009.06316.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. McKeon R.J., Schreiber R.C., Rudge J.S., Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 1991;11(11):3398–3411. [PMC free article] [PubMed] [Google Scholar]

128. Paganetti P.A. Glioblastoma Infiltration into Central Nervous Systeml. J. Cell Biol. 1988;107:91–2281. [PMC free article] [PubMed] [Google Scholar]

129. Kartje G.L. Corticostriatal plasticity is restricted by myelinassociated neurite growth inhibitors in the adult rat. Ann. Neurol. 1999;45:86–778. doi: 10.1002/1531-8249(199906)45:6<778::AID-ANA12>3.0.CO;2-B. [PubMed] [CrossRef] [Google Scholar]

130. Kilinc D., Peyrin J.M., Soubeyre V., Magnifico S., Saias L., Viovy J.L., Brugg B. Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip. Neurotox. Res. 2011;19(1):149–161. doi: 10.1007/s12640-010-9152-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Li L., Ren L., Liu W., Wang J.C., Wang Y., Tu Q., Xu J., Liu R., Zhang Y., Yuan M.S., Li T., Wang J. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics. Anal. Chem. 2012;84(15):6444–6453. doi: 10.1021/ac3013708. [PubMed] [CrossRef] [Google Scholar]

132. Hosmane S., Fournier A., Wright R., Rajbhandari L., Siddique R., Yang I.H., Ramesh K.T., Venkatesan A., Thakor N. Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip. 2011;11(22):3888–3895. doi: 10.1039/c1lc20549h. [PubMed] [CrossRef] [Google Scholar]

133. Kim Y.T., Karthikeyan K., Chirvi S., Davé D.P. Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip. 2009;9(17):2576–2581. doi: 10.1039/b903720a. [PubMed] [CrossRef] [Google Scholar]

134. Vahidi B. Microfluidic-based strip assay for testing the effects of various surface-bound inhibitors in spinal cord injury. J. Neurosci. Methods. 2008;170:96–188. doi: 10.1016/j.jneumeth.2008.01.019. [PubMed] [CrossRef] [Google Scholar]

135. Shi P., Scott M.A., Ghosh B., Wan D., Wissner-Gross Z., Mazitschek R., Haggarty S.J., Yanik M.F. Synapse microarray identification of small molecules that enhance synaptogenesis. Nat. Commun. 2011;2:510. doi: 10.1038/ncomms1518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Figueroa X.A., Cooksey G.A., Votaw S.V., Horowitz L.F., Folch A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip. 2010;10(9):1120–1127. doi: 10.1039/b920585c. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

What are the extensions of a neuron that receive messages called?

The extensions of the neuron that receives messages from other neurons are the DENDRITES. The extensions of a neuron that transmit information to other neurons are the AXONS some of these extensions are insulated by a layer of fatty cells called the MYELIN SHEATH which help speed the neuron's impulses.

What is the term for the neuron extension that passes messages through its branches to other neurons or to muscles or glands?

axon. the neuron extension that passes messages through its branches to other neurons or to muscles or glands. dendrites. a neuron's bushy, branching extensions that receive messages and conduct impulses toward the cell body.

What are the short projections or extensions that extend out beyond the cell and receive messages from other neurons?

A neuron has three main parts. The cell body directs all activities of the neuron. Dendrites extend out from the cell body and receive messages from other nerve cells.

What are synapses in neurons?

Synapse – The junction between the axon of one neuron and the dendrite of another, through which the two neurons communicate.