Was ist ein Katalysator für Kinder erklärt?

Funktion des Autokatalysators

In der Chemie werden als Katalysatoren Stoffe bezeichnet, die die Aktivierungsenergie zum Ablauf der Reaktion herabsetzen und damit die Reaktionsgeschwindigkeit erhöhen, die Ausbeute jedoch nicht beeinflussen. Der Verlauf der katalysierten chemischen Reaktion wird als Katalyse bezeichnet. Der Katalysator selbst ist in den Auspuff des Fahrzeugs eingebaut. Er besteht aus einem Keramikkörper, der von einem Blechmantel umgeben ist. Der Keramikkörper besitzt feine Kanäle in der Längsrichtung zum Auspuff.

Die Kanäle der Gas undurchlässigen, wabenförmigen Keramik sind mit einer Zwischenschicht aus Aluminiumoxid versehen. Auf diese Schicht wird der eigentliche Katalysator, die Edelmetalle Platin, Rhodium, Palladium, aufgetragen, durch deren Wirkung sich die chemischen Reaktionen vollziehen.

Neben der besseren Haftung bringt die Oxid-Zwischenschicht eine Vergrößerung der katalytisch wirksamen Oberfläche auf 20 000 m2pro Liter Katalysatorvolumen.

Pro Auto werden für den Katalysator im Durchschnitt 1-2 g Edelmetall benötigt, das vor der Verschrottung zurückgewonnen werden muss. So entgiften 1-2 g Platin etwa 20 000 m3 Abgas. Das ist ungefähr die Menge an Abgasen, die ein Auto auf 100 000 km produziert.

Das Problem der Abgasreinigung besteht in der großen Vielfalt der auftretenden Abgase (Stickstoffoxide, Kohlenwasserstoffe, Kohlenstoffmonooxid).

Beim einfachen ungeregelten Katalysator, heute vor allem in Altfahrzeugen nachgerüstet, werden Kohlenstoffmonooxid und die Kohlenwasserstoffe abgebaut. NOx (Stickstoffoxide) dagegen werden weniger abgebaut.

Die beste Abgasreinigung erzielt man mit einem geregelten Drei-Wege-Katalysator. Er ist in der Lage, folgende Reaktionen in den Abgasen zu beschleunigen:

  • Reduktion von Stickstoffoxiden zu Stickstoff, z. B.:
    2 NO  +  2 CO  →  N2  +  2 CO2 oder C8H18 +  27 NO  →  13,5 N2  +  8 CO2  +  9 H 2O
  • Oxidation des hochgiftigen Kohlenstoffmonooxids zu ungiftigem Kohlenstoffdioxid
    2 CO  +  O2  →  2 CO2
  • Oxidation der unverbrannten Kohlenwasserstoffe zu Wasserdampf und Kohlenstoffdioxid
    2 C8H18  +  25 O2  → 16 CO2   +  18 H2O

Damit werden durch den Drei-Wege-Katalysator die drei wichtigsten Schadstoffkomponenten abgebaut. So verringert sich z. B. der Anteil NOx pro m3 Abgas mit Katalysator auf 50-400 mg.

Die Drei-Wege-Katalysatoren messen über eine sogenannte Lambda-Sonde die Zusammensetzung des Abgases und regeln die Zufuhr der zur Verbrennung benötigten Luft, um das günstigste Benzin-Luft-Gemisch für eine möglichst vollständige Verbrennung der Kohlenwasserstoffe des Benzins zu erreichen. Lambda ist ein Begriff der Verbrennungstechnik und beschreibt das Verhältnis Brennstoff/Luft. Lambda = 1 bedeutet den Einsatz stöchiometrischer Mengen.

Die Lambda-Sonde ist zwischen Motor und Katalysator geschaltet (Bild 3). Sie misst den Gehalt an unverbranntem Sauerstoff in den Abgasen. Bei Sauerstoffmangel werden CO und die Kohlenwasserstoffe nicht ausreichend umgesetzt, bei Luftüberschuß hingegen die Stickoxide unzureichend abgebaut.
Zu viel Sauerstoff macht den Katalysator unwirksam, da der Sauerstoff die gesamte Katalysatoroberfläche belegt. Misst die Lambda-Sonde zu viel Sauerstoff in den Abgasen, drosselt sie über ein Steuersystem die Luftzufuhr im Vergaser.

Die Wirkungsweise der Platinoberfläche zur Oxidation von Kohlenstoffmonooxid wurde in den letzten Jahren unter Einsatz modernster Analyseverfahren untersucht. Molekularer Sauerstoff wird adsorbiert und in beide Atome gespalten. Atomarer Sauerstoff kann nun mit Kohlenstoffmonooxid, das sich auf der Katalysatoroberfläche befindet, zu Kohlenstoffdioxid (CO2)reagieren, das dann durch den Auspuff abgegeben wird.
Ein Drei-Wege-Katalysator vernichtet etwa 90 % der Schadstoffe.

Auch wenn die umweltgefährdenden Gase Kohlenstoffmonooxid, Stickstoffoxide und der Kohlenwasserstoffe beseitigt werden, sind die Abgase nicht schadstofffrei, sondern nur schadstoffärmer.

Dieser Artikel behandelt allgemein Katalysatoren; zur Autoabgaskatalyse siehe Fahrzeugkatalysator.

Katalysator (von der Katalyse – griechisch: κατάλυσις katálysis „Auflösung“ mit lateinischer Endung) bezeichnet in der Chemie einen Stoff, der die Reaktionsgeschwindigkeit durch die Senkung der Aktivierungsenergie einer chemischen Reaktion erhöht, ohne dabei selbst verbraucht zu werden. Er beschleunigt die Hin- und Rückreaktion gleichermaßen und ändert somit die Kinetik chemischer Reaktionen, nicht deren Thermodynamik.

Ein Katalysator nimmt an einer chemischen Reaktion unter Bildung einer intermediären Stufe mit den Reaktanten teil, aus dem der Katalysator nach Entstehung des Produkts unverändert freigesetzt wird. Ein Katalysator kann diesen so genannten Katalysezyklus viele Male durchlaufen.

Je nachdem, in welchen Phasen Katalysator und Edukte vorliegen, spricht man von homogenen oder heterogenen Katalysatoren. Biochemische Prozesse werden durch Enzyme katalysiert.

Geschichte

Seit der Antike werden chemische Reaktionen mit Hilfe von Katalysatoren ausgeführt. Erst Jöns Jakob Berzelius kam 1835 zu der Erkenntnis, dass eine Vielzahl von Reaktionen nur erfolgte, wenn ein bestimmter Stoff zugegen war, der jedoch nicht verbraucht wurde. Seiner Meinung nach wurden diese Stoffe nicht umgesetzt, lieferten jedoch durch ihre Anwesenheit die Energie über ihre katalytische Kraft. Er bezeichnete diese Stoffe als Katalysatoren.

In der Folgezeit gelang es, tieferes Verständnis für die thermodynamischen Hintergründe der Katalyse zu gewinnen. Wilhelm Ostwald definierte den Katalysator 1895:

„Ein Katalysator ist ein Stoff, der die Geschwindigkeit einer chemischen Reaktion erhöht, ohne selbst dabei verbraucht zu werden und ohne die endgültige Lage des thermodynamischen Gleichgewichts dieser Reaktion zu verändern. “

Wilhelm Ostwald: [1]

Für seine Arbeiten um die Katalyse erhielt Wilhelm Ostwald den Nobelpreis für Chemie.

Chemie

Schematischer Ablauf der Prozesse an einer Katalysatoroberfläche am Beispiel der Ammoniaksynthese

Energieprofil einer katalysierten (rot) und einer nicht-katalysierten Reaktion (schwarz) im direkten Vergleich

Die Wirkungsweise eines Katalysators beruht auf seiner Möglichkeit, den Mechanismus einer chemischen Reaktion derart zu verändern, dass die Aktivierungsenergie verändert wird. Man „geht einen anderen Weg“ auf der Potential-Hyperebene.

Das Potential ist im Allgemeinen eine Funktion mehrerer Variablen. Deshalb ist im einfachsten Fall, der Abhängigkeit des Potentials von nur zwei Variablen, die sich ändern, das Potential eine dreidimensionale Ebene. Die Variablen können z. B. zwei Bindungsabstände zwischen den Reaktanten sein, die sich während der Reaktion ändern. Dieser einfachste Fall ist zwar anschaulich, aber unrealistisch.

Dieses geschieht über die Bildung einer reaktiven Zwischenstufe und deren Abreaktion zu den Endprodukten, wobei der eingesetzte Katalysator zurückgebildet wird. In der Praxis werden Katalysatoren durch Nebenreaktionen nach einiger Zeit des Gebrauchs unwirksam, da sie durch Nebenprodukte blockiert werden. Die folgende Grafik ergibt sich als Schnitt durch die Energie-Hyperpotentialfläche.

In der Grafik gibt die obere Kurve (schwarz) die nicht-katalysierte Reaktion

$ \mathrm {A+B\longrightarrow AB} $

wieder. Die Aktivierungsenergie dieser unkatalysierten Reaktion wird mit $ E_{\mathrm {u} } $ bezeichnet. Die untere Kurve (rot) zeigt den Energieverlauf der durch $ \mathrm {K} $ katalysierten Reaktion an. Hier wird über einen Übergangszustand (erstes Profilmaximum) eine Zwischenstufe $ \mathrm {KA} $ (lokales Profilminimum) erreicht:

$ \mathrm {K+A\longrightarrow KA} $

Über einen weiteren Übergangszustand (zweites Profilmaximum) wird das Produkt $ \mathrm {AB} $ gebildet, wobei der Katalysator $ \mathrm {K} $ zurückgebildet wird:

$ \mathrm {KA+B\longrightarrow K+AB} $

Die mit $ E_{\mathrm {k} } $ bezeichnete Aktivierungsenergie der katalysierten Reaktion ist geringer.

Als Beispiel kann die katalytische Verbrennung von Wasserstoff mit Sauerstoff angeführt werden. Diese Verbrennung ist thermodynamisch so günstig, dass sie prinzipiell „freiwillig“ ablaufen sollte, jedoch aufgrund der bei Zimmertemperatur hohen Aktivierungsenergie so stark gehemmt ist, dass die Reaktionsgeschwindigkeit sehr gering ist. Die Anwesenheit eines Platin-Katalysators kann diese Aktivierungsenergie derart erniedrigen, dass diese Reaktion hinreichend schnell bei niedrigeren Temperaturen abläuft. Eine Anwendung dafür war das Döbereinersche Feuerzeug.

Bei Gleichgewichtsreaktionen verändert ein Katalysator Hin- und Rückreaktion auf die gleiche Weise, so dass die Lage des Gleichgewichts nicht verändert wird, das Gleichgewicht sich aber schneller einstellt.

Bedeutung der Katalysatoren

Katalysatoren kommen in der Natur in vielfältiger Weise vor. In Lebewesen laufen fast alle lebensnotwendigen chemischen Reaktionen katalysiert ab (bw. bei der Photosynthese, der Atmung oder der Energiegewinnung aus der Nahrung). Die verwendeten Katalysatoren sind meist bestimmte Eiweiße, die Enzyme.

Die Herabsetzung der Aktivierungsenergie durch Katalysatoren ist bei chemischen Reaktionen von großer kommerzieller Bedeutung. Derzeit wird geschätzt, dass etwa 80 % aller chemischen Erzeugnisse eine katalytische Stufe in ihrer Wertschöpfungskette durchlaufen. Ohne die Anwesenheit des Katalysators würde die jeweilige chemische Reaktion sehr viel langsamer oder gar nicht erfolgen. Deshalb sind Katalysatoren heutzutage kaum noch aus der Chemietechnik wegzudenken.

Entstehen bei Reaktionen mehrere Produkte, spielt die Selektivität eines Katalysators eine sehr wichtige Rolle. Dabei wird der Katalysator so gewählt, dass nur diejenige Reaktion beschleunigt wird, die das erwünschte Produkt erzielt. Verunreinigungen durch Nebenprodukte werden so weitgehend vermieden.

Aus der Sicht des Umweltschutzes wird durch den Einsatz von selektiven und aktiven Katalysatoren Energie eingespart und die Menge an Nebenprodukten reduziert. Nicht minder bedeutsam für die Umwelt ist die Abgasnachbehandlung in der industriellen Produktion oder in Elektrizitätswerken. Im Falle der abgaskatalytischen Verfahren (z. B. in PKW) werden unvermeidbare, gefährliche Substanzen in weniger gefährliche umgesetzt.

Beispiel: Im Autoabgaskatalysator reagiert das Atemgift Kohlenstoffmonoxid (CO) sowie unverbrannte Kohlenwasserstoffe mit NOx und Sauerstoff (O2) zu Kohlenstoffdioxid (CO2) sowie Stickstoff und Wasser (H2O).

Beispiele für Katalysatoren

links: Teilweise karamellisierter Würfelzucker, rechts: Verbrennung eines Zuckerwürfels mit Asche als Katalysator

Cereisen (Ammoniaksynthese), Raney-Nickel, Platin, Rhodium, Palladium, Braunstein, Vanadiumpentoxid und Samarium(III)-oxid katalysieren die Hydrierung und Dehydrierung von Ethanol.

Hopcalite, eine Gruppe von Katalysatoren aus verschiedenen Metalloxiden, katalysieren die Oxidation von Kohlenstoffmonoxid zu Kohlenstoffdioxid bei Raumtemperatur.

Fahrzeugkatalysator: Bekanntestes Beispiel ist der Katalysator im Automobil zur Reduktion der Abgasemissionen, bei dem das ganze Gerät nach dem chemisch-physikalischen Prinzip benannt ist.

Aktivkohlewärmer: Salz und Wasser dienen als Katalysatoren. Er dient als Handwärmer.

Wichtige katalytische Verfahren

Verfahren Produkt Katalysator Bedingung Reaktor
Haber-Bosch-Verfahren NH3 α-Eisen/Al2O3 T = 450…500 °C; p = 25…40 MPa Festbettreaktor
Methanolherstellung CH3OH CuO/Cr2O3, ZnO/Cr2O3 oder CuO/ZnO T = 210…280 °C; p = 6 MPa Festbettreaktor
Kontaktverfahren H2SO4 V2O5/Träger T = 400…500 °C Festbettreaktor
Ostwaldverfahren HNO3 Platin/Rhodium T = 800 °C

Siehe auch

  • Katalysatorwirkungsgrad
  • Inhibitor
  • Oberflächenkoordinationschemie

Literatur

  • Ferdi Schüth: Schlüsseltechnologie der chemischen Industrie: Heterogene Katalyse. In: Chemie in unserer Zeit, 2006, 40, 92–103.
  • Michael Röper: Homogene Katalyse in der chemischen Industrie. In: Chemie in unserer Zeit, 2006, 40, 126–135.
  • Rainer Stürmer, Michael Breuer: Enzyme als Katalysatoren. Chemie und Biologie Hand in Hand. In: Chemie in unserer Zeit, 2006, 40, 104–111.

Weblinks

Einzelnachweise

  1. Eugen Hintsches: Nanozwiebeln würzen die Styrolchemie. In: Materialwissenschaften, Nr. 4, 2002, S. 44–50 (PDF, S. 48)

Was ist ein Katalysator einfach erklärt?

Als Katalysator (von der Katalyse, griechisch , katálysis - Auflösung mit lateinischer Endung) bezeichnet man in der Chemie einen Stoff, der die Reaktionsgeschwindigkeit einer chemischen Reaktion beeinflusst, ohne dabei selbst verbraucht zu werden. Dies geschieht durch Herauf- oder Herabsetzung der Aktivierungsenergie.

Was macht eine Katalysator?

Der Katalysator hat die Aufgabe, schädliche Abgasbestandteile von Verbrennungsmotoren durch eine chemische Reaktion in unschädliche Gase umzuwandeln.

Wo findet man Katalysatoren im Alltag?

Fahrzeugkatalysator: Bekanntestes Beispiel ist der Katalysator im Automobil zur Reduktion der Abgasemissionen, bei dem das ganze Gerät nach dem chemisch-physikalischen Prinzip benannt ist. Aktivkohlewärmer: Salz und Wasser dienen als Katalysatoren. Er dient als Handwärmer.

Was dient als Katalysator?

Katalysator – Beispiele Je nach Reaktion können die verschiedensten Stoffe als Katalysatoren dienen. Die Dehydrierung von Ethanol wird beispielsweise durch Raney-Nickel, Platin, Rhodium oder Palladium katalysiert.

Toplist

Neuester Beitrag

Stichworte